核磁共振儀

核磁共振儀

核磁共振(MRI),又叫核磁共振成像技術。是繼CT后醫學影像學的又一重大進步,在1933年由美國物理學家伊西多·艾薩克·拉比首次實驗成功。自70年代應用以來,它以極快的速度得到發展。

簡介


基本原理:是將人體置於特殊的磁場中,用無線電射頻脈衝激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈衝后,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MR)。
MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈衝激后產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。
MR提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MR對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤后突、原發性肝癌等疾病的診斷也很有效。

現象來源


核磁共振現象來源於原子核的自旋角動量在外加磁場作用下的運動。根據量子力學原理,原子核與電子一樣,也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數決定,實驗結果顯示,不同類型的原子核自旋量子數也不同:質量數和質子數均為偶數的原子核,自旋量子數為0;質量數為奇數的原子核,自旋量子數為半整數;質量數為偶數,質子數為奇數的原子核,自旋量子數為整數。迄今為止,只有自旋量子數等於1/2的原子核,其核磁共振信號才能夠被人們利用,經常為人們所利用的原子核有: 1H、11B、13C、17O、19F、31P。
由於原子核攜帶電荷,當原子核自旋時,會由自旋產生一個磁矩,這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動量成正比。將原子核置於外加磁場中,若原子核磁矩與外加磁場方向不同,則原子核磁矩會繞外磁場方向旋轉,這一現象類似陀螺在旋轉體研究。
核磁共振成像技術的最大優點是能夠在對身體沒有損害的前提下,快速地獲得患者身體內部結構的高精確度立體圖像。利用這種技術,可以診斷以前無法診斷的疾病,特別是腦和脊髓部位的病變;可以為患者需要手術的部位準確定位,特別是腦手術更離不開這種定位手段;可以更準確地跟蹤患者體內的癌變情況,為更好地治療癌症奠定基礎。此外,由於使用這種技術時不直接接觸被診斷者的身體,因而還可以減輕患者的痛苦。