洛朗·拉佛閣
洛朗·拉佛閣
洛朗·拉佛閣1966年11月6日生於法國安東尼,1986年畢業於巴黎高等師範學校,1990年成為法國國家科學研究中心的助理研究員,同時參加巴黎南大學的算術與代數幾何小組的工作並於1994年獲博士學位。2000年他成為位於法國伊沃特佈雷的高等科學研究院的終身數學教授。
洛朗 拉佛閣
洛朗·佛閣證函數域情形相應的整體朗蘭茲綱領。他工作的特點是:令人驚嘆的技巧,深刻的洞察力和系統得力的方法。朗蘭茲綱領最先是由羅伯特·朗蘭茲在1967年給安德雷·韋依的一封著名的信中提出的。它是一組意義深遠的猜想,這些猜想精確地預言了數學中某些表面上毫不相干的領域之間可能存在的聯繫。朗蘭茲綱領的影響與日俱增,與它有關的每一個新的進展都被看作是重要的成果。
朗蘭茲綱領強支持,紀魯·維(Andrew Wiles)證明費馬大定理。維爾斯的證明與其他人的工作一起導致了谷山-志村-韋依猜想的解決。該猜想揭示了橢圓曲線與模形式之間的關係,前者是具有深刻算術性質的幾何對象,後者是來源於截然不同的數學分析領域的高度周期性的函數。朗蘭茲綱領則提出了數論中的伽羅瓦表示與分析中的自守型之間的一個關係網。
拉佛閣所證明的相應的整體朗蘭茲綱領,對更抽象的所謂函數域而非通常的數域情形提供了這樣一種完全的理解。我們可以將函數域設想為由多項式的商組成的集合,對這些多項式商可以像有理數那樣進行加、減、乘、除。拉佛閣對於任意給定的函數域建立了其伽羅瓦群表示和與該域相伴的自守型之間的精確聯繫。
在這一工作的過程中,拉佛閣還發現了一種將來可能被證明是十分重要的新的幾何構造。所有這些發展的影響正在波及整個數學。
2002年菲爾茲獎