共找到2條詞條名為冪函數的結果 展開

冪函數

基本初等函數之一

冪函數是基本初等函數之一。

一般地。形如y=x(α為有理數)的函數,即以底數為自變數,冪為因變數,指數為常數的函數稱為冪函數。例如函數y=x 、y=x、y=x、y=x(註:y=x=1/x y=x時x≠0)等都是冪函數。

定義


冪函數的一般形式是,其中,a可為任何常數,但中學階段僅研究a為有理數的情形(a為無理數時取其近似的有理數),這時可表示為,其中m,n,k∈N*,且m,n互質。特別,當n=1時為整數指數冪。
冪函數
冪函數
(1)當m,n都為奇數,k為偶數時,如,,等,定義域、值域均為R,為奇函數
(2)當m,n都為奇數,k為奇數時,如,,等,定義域、值域均為{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),為奇函數;
(3)當m為奇數,n為偶數,k為偶數時,如,等,定義域、值域均為[0,+∞),為非奇非偶函數;
(4)當m為奇數,n為偶數,k為奇數時,如,等,定義域、值域均為(0,+∞),為非奇非偶函數;
(5)當m為偶數,n為奇數,k為偶數時,如,等,定義域為R、值域為[0,+∞),為偶函數;
(6)當m為偶數,n為奇數,k為奇數時,如,等,定義域為{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域為(0,+∞),為偶函數。

性質


冪函數的圖象一定在第一象限內,一定不在第四象限,至於是否在第二、三象限內,要看函數的奇偶性;冪函數的圖象最多只能同時在兩個象限內;如果冪函數圖象與坐標軸相交,則交點一定是原點.

正值性質

當α>0時,冪函數y=x有下列性質:
a、圖像都經過點(1,1)(0,0);
b、函數的圖像在區間[0,+∞)上是增函數;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;

負值性質

當α<0時,冪函數y=x有下列性質:
a、圖像都通過點(1,1);
b、圖像在區間(0,+∞)上是減函數;(內容補充:若為X易得到其為偶函數。利用對稱性,對稱軸是y軸,可得其圖像在區間(-∞,0)上單調遞增。其餘偶函數亦是如此)
c、在第一象限內,有兩條漸近線(即坐標軸),自變數趨近0,函數值趨近+∞,自變數趨近+∞,函數值趨近0。

零值性質

當α=0時,冪函數y=x有下列性質:
a、y=x的圖像是直線y=1去掉一點(0,1)。它的圖像不是直線。

討論分析

由於x大於0是對α的任意取值都有意義的,因此下面給出冪函數在各象限的各自情況。可以看到:
(1)所有的圖像都通過(1,1)這點.(α≠0) α>0時 圖象過點(0,0)和(1,1)。
(2)單調區間:
當α為整數時,α的正負性和奇偶性決定了函數的單調性:
①當α為正奇數時,圖像在定義域為R內單調遞增;
②當α為正偶數時,圖像在定義域為第二象限內單調遞減,在第一象限內單調遞增;
③當α為負奇數時,圖像在第一三象限各象限內單調遞減(但不能說在定義域R內單調遞減);
④當α為負偶數時,圖像在第二象限上單調遞增,在第一象限內單調遞減。
當α為分數時,α的正負性和分母的奇偶性決定了函數的單調性:
①當α>0,分母為偶數時,函數在第一象限內單調遞增;
②當α>0,分母為奇數時,函數在第一、三象限各象限內單調遞增;
③當α<0,分母為偶數時,函數在第一象限內單調遞減;
④當α<0,分母為奇數時,函數在第一、三象限各象限內單調遞減(但不能說在定義域R內單調遞減);
(3)當α>1時,冪函數圖形下凹(豎拋);
當0<α<1時,冪函數圖形上凸(橫拋)。
當α<0時,圖像為雙曲線。
(4)在(0,1)上,冪函數中α越大,函數圖像越靠近x軸;在(1,﹢∞)上冪函數中α越大,函數圖像越遠離x軸。
(5)當α<0時,α越小,圖形傾斜程度越大。
(6)顯然冪函數無界限。
(7)α=2n(n為整數),該函數為偶函數 {x|x≠0}。

特性


對於α的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果,且為既約分數(即p,q互質),q和p都是整數,則,如果q是奇數,函數的定義域是R;如果q是偶數,函數的定義域是[0,+∞)。
當指數α是負整數時,設α=-k,則,顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
α小於0時,x不等於0;
α的分母為偶數時,x不小於0;
α的分母為奇數時,x取R。