伽瑪衰變

放射性元素衰變的形式之一

伽馬衰變(γ衰變)是放射性元素衰變的一種形式,反應時放出伽馬射線

簡介


伽馬衰變( γ衰變)是放射性元素衰變的一種形式,反應時放出伽馬射線。
由於此衰變不涉及質量或電荷變化,故此並沒有特別重要的化學反應式,但仍可著量寫成:
伽瑪衰變
伽瑪衰變
以星號代表某物質 X的活躍狀態。
伽馬衰變所釋放的伽馬射線是一種電磁輻射,是亞原子粒子相互作用產生的特定頻率的電磁波,例如來自電子對湮沒和放射性衰變;伽馬射線最多產生自星際空間的核反應

射線


伽瑪射線(英語:Gamma ray),或 γ射線原子衰變裂解時放出的射線之一。此種電磁波波長在0.01奈米以下,穿透力很強,又攜帶高能量,容易造成生物體細胞內的脫氧核糖核酸(DNA)斷裂進而引起細胞突變,因此也可以作醫療之用。
1900年由法國科學家保羅·維拉爾發現,他將含鐳的氯化鋇通過陰極射線,從照片記錄上看到輻射穿過0.2毫米的鉛箔,拉塞福稱這一貫穿力非常強的輻射為γ射線,是繼α射線β射線后發現的第三種原子核射線。1913年,γ射線被證實為是電磁波,波長短於0.2埃,和X射線特性相似但具有比X射線還要強的穿透能力。γ射線通過物質並與原子相互作用時會產生光電效應康普頓效應和正負電子對效應。γ射線即使使用較厚材料阻擋一般也仍然有部分射線泄漏,所以通常只能用半吸收厚度來定量材料的阻隔效果。半吸收厚度是指入射射線強度減弱到一半時阻隔物體的厚度。半吸收厚度其數值d(1/2)=ln2/μ≈0.693/μ,μ表示阻隔物材料的射線吸收係數。材料的射線吸收係數與射線頻率、能量以及材料種類有關,一般原子序數高和密度高的元素構成的材料其γ射線吸收係數也較高。普通放射源如Cs-137放射源產生的γ射線在鋁、鐵、銅、鉛中的半吸收厚度分別約為3.2cm、2.6cm、1.4cm和0.6cm。

周期


放射性衰變通常都有一定的周期,並且一般不因物理或化學環境而改變,這也就是放射性可用於確定年代的原因。由於一個原子的衰變是自然地發生,即不能預知何時會發生,因此會以機率來表示。假設每顆原子衰變的機率大致相同,例如半衰期為一小時的原子,一小時后其未衰變的原子會剩下原來的二分之一,兩小時後會是四分之一,三小時後會是八分之一。

參看


• 伽馬射線
• 放射性
• α衰變
• β衰變
• β粒子