伽瑪衰變
放射性元素衰變的形式之一
伽馬衰變( γ衰變)是放射性元素衰變的一種形式,反應時放出伽馬射線。
由於此衰變不涉及質量或電荷變化,故此並沒有特別重要的化學反應式,但仍可著量寫成:
伽瑪衰變
伽瑪射線(英語:Gamma ray),或 γ射線是原子衰變裂解時放出的射線之一。此種電磁波波長在0.01奈米以下,穿透力很強,又攜帶高能量,容易造成生物體細胞內的脫氧核糖核酸(DNA)斷裂進而引起細胞突變,因此也可以作醫療之用。
1900年由法國科學家保羅·維拉爾發現,他將含鐳的氯化鋇通過陰極射線,從照片記錄上看到輻射穿過0.2毫米的鉛箔,拉塞福稱這一貫穿力非常強的輻射為γ射線,是繼α射線、β射線后發現的第三種原子核射線。1913年,γ射線被證實為是電磁波,波長短於0.2埃,和X射線特性相似但具有比X射線還要強的穿透能力。γ射線通過物質並與原子相互作用時會產生光電效應、康普頓效應和正負電子對效應。γ射線即使使用較厚材料阻擋一般也仍然有部分射線泄漏,所以通常只能用半吸收厚度來定量材料的阻隔效果。半吸收厚度是指入射射線強度減弱到一半時阻隔物體的厚度。半吸收厚度其數值d(1/2)=ln2/μ≈0.693/μ,μ表示阻隔物材料的射線吸收係數。材料的射線吸收係數與射線頻率、能量以及材料種類有關,一般原子序數高和密度高的元素構成的材料其γ射線吸收係數也較高。普通放射源如Cs-137放射源產生的γ射線在鋁、鐵、銅、鉛中的半吸收厚度分別約為3.2cm、2.6cm、1.4cm和0.6cm。
放射性衰變通常都有一定的周期,並且一般不因物理或化學環境而改變,這也就是放射性可用於確定年代的原因。由於一個原子的衰變是自然地發生,即不能預知何時會發生,因此會以機率來表示。假設每顆原子衰變的機率大致相同,例如半衰期為一小時的原子,一小時后其未衰變的原子會剩下原來的二分之一,兩小時後會是四分之一,三小時後會是八分之一。
• 伽馬射線
• 放射性
• α衰變
• β衰變
• α粒子
• β粒子