布萊克-斯科爾斯公式
布萊克-斯科爾斯公式
1997年10月10日,第二十九屆諾貝爾經濟學獎授予了兩位美國學者,哈佛商學院教授羅伯特·默頓(RoBert Merton)和斯坦福大學教授邁倫·斯克爾斯(Myron Scholes)。他們創立和發展的布萊克——斯克爾斯期權定價模型(Black Scholes Option Pricing Model)為包括股票、債券、貨幣、商品在內的新興衍生金融市場的各種以市價價格變動定價的衍生金融工具的合理定價奠定了基礎。
期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。該模型認為,只有股價的當前值與未來的預測有關;變數過去的歷史與演變方式與未來的預測不相關。模型表明,期權價格的決定非常複雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。
羅伯特·默頓 邁倫·斯克爾斯
斯科爾斯與已故的經濟學家布萊克曾於1973年發表《期權定價和公司債務》一文,該文給出了期權定價公式,即著名的布萊克-斯科爾斯公式。與以往期權定價公式的重要差別在於只依賴於可觀察到的或可估計出的變數,這使得布萊克-斯科爾斯公式避免了對未來股票價格概率分佈和投資者風險偏好的依賴,這主要得益於他們認識到,可以用標的股票和無風險資產構造的投資組合的收益來複制期權的收益,在無套利情況下,複製的期權價格應等於購買投資組合的成本,好期權價格僅依賴於股票價格的波動量、無風險利率、期權到期時間、執行價格、股票時價。上述幾個量除股票的估計也比對未來股票價格期望值的估計簡單得多。市場許多大投資機構在股票市場和期權市場中連續交易進行套利,他們的行為類似於期權的複製者,使得期權價格越來越接近於布萊克-斯科爾斯的複製成本,即布萊克-斯科爾斯公式所確定的價格。
布萊克和斯科爾斯通過對1966年至1969年期權交易價格數據的分析、另一學者哥雷對芝加哥期權交易所成立后前七個月交易價格的分析都證實了布萊克-斯科爾斯公式的準確性。布萊克和斯科爾斯複製法則的重要性還在於,它告訴人們可以利用已存在的證券來複制符合於某種投資目的的新的證券品種,這成為金融機構設計新的金融產品的思想方法。該論文中關於公司債務問題的論述也極富創建性,指出:企業債務可以看作一組簡單期權合約的組合,期權定價模型可以用於對企業債務的定價,這包括對債券、可轉換債券的定價。傳統方法在分析權益價格、長期債務、可轉換債券時,對資本結構中不同的組合成分結合起來進行考慮。利用期權定價理論評價企業債務時,對資本結構中不同的組成部分同時進行評價,這樣就考慮了每種資產對其他資產定價的影響,確保了整個資產結構評價的一致性。利用布萊克-斯科爾斯公式對某一特定證券定價時,不象統計或回歸分析那樣,需要這種證券或與其相類似證券以往的數據,它可以對以往所沒有的新型證券進行定價,這一特性擴大了期權定價模型的應用,為企業新型債務及交易證券如保險合約進行定價提供了方法。
其中,布萊克-斯科爾斯定價模型,下式為無紅利的歐式看漲期權定價模型:
上式中表示累計正態分佈
S-------表示股票當前的價格
X-------表示期權的執行價格
PV-----代表折現
T-t-----表示行權價格距離現在到期日
N-------表示正態分佈
б-------表示波動率
MyronS.Scholes(1941-1997年)諾貝爾經濟學獎獲得者B-S期權定價模型(以下簡稱B-S模型)及其假設條件
B-S模型有7個重要的假設
1、股票價格行為服從對數正態分佈模式;
2、在期權有效期內,無風險利率和金融資產收益變數是恆定的;
3、市場無摩擦,即不存在稅收和交易成本,所有證券完全可分割;
4、金融資產在期權有效期內無紅利及其它所得(該假設后被放棄);
5、該期權是歐式期權,即在期權到期前不可實施。
6、不存在無風險套利機會;
7、證券交易是持續的;
8、投資者能夠以無風險利率借貸。
榮獲諾貝爾經濟學獎的B-S定價公式[1]
C—期權初始合理價格
L—期權交割價格
S—所交易金融資產現價
T—期權有效期
r—連續複利計無風險利率H
—年度化方差
—正態分佈變數的累積概率分佈函數,在此應當說明兩點:
第一,該模型中無風險利率必須是連續複利形式。一個簡單的或不連續的無風險利率(設為)一般是一年複利一次,而r要求利率連續複利。必須轉化為r方能代入上式計算。兩者換算關係為:或。例如,則,即100以5.83%的連續複利投資第二年將獲106,該結果與直接用計算的答案一致。
第二,期權有效期T的相對數表示,即期權有效天數與一年365天的比值。如果期權有效期為100天,則。
自B-S模型1973年首次在政治經濟雜誌(Journalofpo Litical Economy)發表之後,芝加哥期權交易所的交易商們馬上意識到它的重要性,很快將B-S模型程序化輸入計算機應用於剛剛營業的芝加哥期權交易所。該公式的應用隨著計算機、通訊技術的進步而擴展。到今天,該模型以及它的一些變形已被期權交易商、投資銀行、金融管理者、保險人等廣泛使用。衍生工具的擴展使國際金融市場更富有效率,但也促使全球市場更加易變。新的技術和新的金融工具的創造加強了市場與市場參與者的相互依賴,不僅限於一國之內還涉及他國甚至多國。結果是一個市場或一個國家的波動或金融危機極有可能迅速的傳導到其它國家乃至整個世界經濟之中。金融體制不健全、資本市場不完善,但是隨著改革的深入和向國際化靠攏,資本市場將不斷發展,匯兌制度日漸完善,企業也將擁有更多的自主權從而面臨更大的風險。因此,對規避風險的金融衍生市場的培育是必需的,對衍生市場進行探索也是必要的,才剛剛起步。
對B-S模型的檢驗、批評與發展
B-S模型問世以來,受到普遍的關注與好評,有的學者還對其準確性開展了深入的檢驗。但同時,不少經濟學家對模型中存在的問題亦發表了不同的看法,並從完善與發展B-S模型的角度出發,對之進行了擴展。
1977年美國學者伽萊(galai)利用芝加哥期權交易所上市的股票權的數據,首次對B-S模型進行了檢驗。此後,不少學者在這一領域內作了有益的探索。其中比較有影響的代表人物有特里皮(trippi)、奇拉斯(chiras)、曼納斯特(manuster)、麥克貝斯(macbeth)及默維勒(merville)等。綜合起來,這些檢驗得到了如下一些具有普遍性的看法:
1.模型對平值期權的估價令人滿意,特別是對剩餘有效期限超過兩月,且不支付紅利者效果尤佳。
2.對於高度增值或減值的期權,模型的估價有較大偏差,會高估減值期權而低估增值期權。
3.對臨近到期日的期權的估價存在較大誤差。
4.離散度過高或過低的情況下,會低估低離散度的買入期權,高估高離散度的買方期權。但總體而言,布-肖模型仍是相當準確的,是具有較強實用價值的定價模型。
對B-S模型的檢驗著眼於從實際統計數據進行分析,對其表現進行評估。而另外的一些研究則從理論分析入手,提出了B-S模型存在的問題,這集中體現於對模型假設前提合理性的討論上。不少學者認為,該模型的假設前提過嚴,影響了其可靠性,具體表現在以下幾方面:
首先,對股價分佈的假設。B-S模型的一個核心假設就是股票價格波動滿足幾何維納過程,從而股價的分佈是對數正態分佈,這意味著股價是連續的。麥頓(merton)、約翰·考克斯(John Carrington Cox)、斯蒂芬·羅斯(Stephen A. Ross)、馬克·魯賓斯坦(Mark Rubinstein)等人指出,股價的變動不僅包括對數正態分佈的情況,也包括由於重大事件而引起的跳起情形,忽略后一種情況是不全面的。他們用二項分佈取代對數正態分佈,構建了相應的期權定價模型。
其次,關於連續交易的假設。從理論上講,投資者可以連續地調整期權與股票間的頭寸狀況,得到一個無風險的資產組合。但實踐中這種調整必然受多方面因素的制約:1.投資者往往難以按同一的無風險利率借入或貸出資金;2.股票的可分性受具體情況制約;3.頻繁的調整必然會增加交易成本。因此,現實中常出現非連續交易的情況,此時,投資者的風險偏好必然影響到期權的價格,而B-S模型並未考慮到這一點。
再次,假定股票價格的離散度不變也與實際情況不符。布萊克本人後來的研究表明,隨著股票價格的上升,其方差一般會下降,而並非獨立於股價水平。有的學者(包括布萊克本人)曾想擴展B-S模型以解決變動的離散度的問題,但至今未取得滿意的進展。
此外,不考慮交易成本及保證金等的存在,也與現實不符。而假設期權的基礎股票不派發股息更限制了模型的廣泛運用。不少學者認為,股息派發的時間與數額均會對期權價格產生實質性的影響,不能不加以考察。他們中有的人對模型進行適當調整,使之能反映股息的影響。具體來說,如果是歐洲買方期權,調整的方法是將股票價格減去股息(d)的現值替代原先的股價,而其他輸入變數不變,代入B-S模型即可。若是美國買方期權,情況稍微複雜。第一步先按上面的辦法調整后得到不提早執行情況下的價格。第二步需估計在除息日前立即執行情況下期權的價格,將調整后的股價替代實際股價,距除息日的時間替代有效期限、股息調整后的執行價格(x-d)替代實際執行價格,連同無風險利率與股價離散度等變數代入模型即可。第三步選取上述兩種情況下期權的較大值作為期權的均衡價格。需指出的是,當支付股息的情況比較複雜時,這種調整難度很大。
期權是購買方支付一定的期權費后所獲得的在將來允許的時間買或賣一定數量的基礎商品(underlying assets)的選擇權。期權價格是期權合約中唯一隨市場供求變化而改變的變數,它的高低直接影響到買賣雙方的盈虧狀況,是期權交易的核心問題。早在1900年法國金融專家勞雷斯·巴舍利耶就發表了第一篇關於期權定價的文章。此後,各種經驗公式或計量定價模型紛紛面世,但因種種局限難於得到普遍認同。70年代以來,伴隨著期權市場的迅速發展,期權定價理論的研究取得了突破性進展。
在國際衍生金融市場的形成發展過程中,期權的合理定價是困擾投資者的一大難題。隨著計算機、先進通訊技術的應用,複雜期權定價公式的運用成為可能。在過去的20年中,投資者通過運用布萊克——斯克爾斯期權定價模型,將這一抽象的數字公式轉變成了大量的財富。
期權定價是所有金融應用領域數學上最複雜的問題之一。第一個完整的期權定價模型由Fisher Black和Myron Scholes創立並於1973年公之於世。B—S期權定價模型發表的時間和芝加哥期權交易所正式掛牌交易標準化期權合約幾乎是同時。不久,德克薩斯儀器公司就推出了裝有根據這一模型計算期權價值程序的計算器。大多從事期權交易的經紀人都持有各家公司出品的此類計算機,利用按照這一模型開發的程序對交易估價。這項工作對金融創新和各種新興金融產品的面世起到了重大的推動作用。
斯克爾斯與他的同事、已故數學家費雪·布萊克(Fischer Black)在70年代初合作研究出了一個期權定價的複雜公式。與此同時,默頓也發現了同樣的公式及許多其它有關期權的有用結論。結果,兩篇論文幾乎同時在不同刊物上發表。所以,布萊克—斯克爾斯定價模型亦可稱為布萊克—斯克爾斯—默頓定價模型。默頓擴展了原模型的內涵,使之同樣運用於許多其它形式的金融交易。瑞士皇家科學協會(The Royal Swedish Academyof Sciencese)讚譽他們在期權定價方面的研究成果是今後25年經濟科學中的最傑出貢獻。
1979年,科克斯(Cox)、羅斯(Ross)和盧賓斯坦(Rubinstein)的論文《期權定價:一種簡化方法》提出了二項式模型(Binomial Model),該模型建立了期權定價數值法的基礎,解決了美式期權定價的問題。
1、巴施里耶(Bachelier,1900)
2、斯普倫克萊(Sprenkle,1961)
3、博內斯(Boness,1964)
4、薩繆爾森(Samuelson,1965)
(1)Black—Scholes公式
(2)二項式定價方法
(3)風險中性定價方法
(4)鞅定價方法等
B-S模型
期權定價模型基於對沖證券組合的思想。投資者可建立期權與其標的股票的組合來保證確定報酬。在均衡時,此確定報酬必須得到無風險利率。期權的這一定價思想與無套利定價的思想是一致的。所謂無套利定價就是說任何零投入的投資只能得到零回報,任何非零投入的投資,只能得到與該項投資的風險所對應的平均回報,而不能獲得超額回報(超過與風險相當的報酬的利潤)。從Black-Scholes期權定價模型的推導中,不難看出期權定價本質上就是無套利定價。
假設條件
1、標的資產價格服從對數正態分佈;
2、在期權有效期內,無風險利率和金融資產收益變數是恆定的;
3、市場無摩擦,即不存在稅收和交易成本;
4、金融資產在期權有效期內無紅利及其它所得(該假設后被放棄);
5、該期權是歐式期權,即在期權到期前不可實施。
定價公式
其中:
C—期權初始合理價格
L—期權交割價格
S—所交易金融資產現價
T—期權有效期
γ—連續複利計無風險利率H
—年度化方差
—正態分佈變數的累積概率分佈函數,在此應當說明兩點:
第一,該模型中無風險利率必須是連續複利形式。一個簡單的或不連續的無風險利率(設為)一般是一年複利一次,而γ要求利率連續複利。必須轉化為r方能代入上式計算。兩者換算關係為:或。例如,則,即100以583%的連續複利投資第二年將獲106,該結果與直接用計算的答案一致。
第二,期權有效期T的相對數表示,即期權有效天數與一年365天的比值。如果期權有效期為100天,則。
推導運用
(一)B-S模型的推導是由看漲期權入手的,對於一項看漲期權,其到期的期值是:
其中,—看漲期權到期期望值ST—到期所交易金融資產的市場價值
L—期權交割(實施)價
到期有兩種可能情況:1、如果STL,則期權實施以進帳(In-the-money)生效,且
2、如果
從而:
其中:的概率—既定下ST的期望值將按有效期無風險連續複利貼現,得期權初始合理價格:這樣期權定價轉化為確定P和。
首先,對收益進行定義。與利率一致,收益為金融資產期權交割日市場價格(ST)與現價(S)比值得對數值,即收益。由假設1收益服從對數正態分佈,即,所以,可以證明,相對價格期望值大於,為:從而,,且有其次,求(STL)的概率P,也即求收益大於(LS)的概率。已知正態分佈有性質:
其中:ζ—正態分佈隨機變數,χ—關鍵值,μ—ζ的期望值,σ—ζ的標準差
所以:由對稱性:
第三,求既定STL下ST的期望值。因為處於正態分佈的L到範圍,所以,
其中:
最後,將P、代入(*)式整理得B-S定價模型:
(二)B-S模型應用實例假設市場上某股票現價S為164,無風險連續複利利率γ是0.0521,市場方差為0.0841,那麼實施價格L是165,有效期T為0.0959的期權初始合理價格計算步驟如下:
①求D1:
②求D2:
③查標準正態分佈函數表,得:
④求C:
因此理論上該期權的合理價格是5.803。如果該期權市場實際價格是5.75,那麼這意味著該期權有所低估。在沒有交易成本的條件下,購買該看漲期權有利可圖。
(三)看跌期權定價公式的推導B-S模型是看漲期權的定價公式。
根據售出—購進平價理論(Put-callparity)可以推導出有效期權的定價模型,由售出—購進平價理論,購買某股票和該股票看跌期權的組合與購買該股票同等條件下的看漲期權和以期權交割價為面值的無風險折扣發行債券具有同等價值,以公式表示為:
移項得:,將B-S模型代入整理得:此即為看跌期權初始價格定價模型。
發展
B-S模型只解決了不分紅股票的期權定價問題,默頓發展了B-S模型,使其亦運用於支付紅利的股票期權。(一)存在已知的不連續紅利假設某股票在期權有效期內某時間T(即除息日)支付已知紅利DT,只需將該紅利現值從股票現價S中除去,將調整后的股票價值S′代入B-S模型中即可:。如果在有效期內存在其它所得,依該法一一減去。從而將B-S模型變型得新公式:
(二)存在連續紅利支付是指某股票以一已知分紅率(設為δ)支付不間斷連續紅利,假如某公司股票年分紅率δ為0.04,該股票現值為164,從而該年可望得紅利。值得注意的是,該紅利並非分4季支付每季164;事實上,它是隨美元的極小單位連續不斷的再投資而自然增長的,一年累積成為6.56。因為股價在全年是不斷波動的,實際紅利也是變化的,但分紅率是固定的。因此,該模型並不要求紅利已知或固定,它只要求紅利按股票價格的支付比例固定。
在此紅利現值為:,所以,以S′代S,得存在連續紅利支付的期權定價公式:
二項式模型
二項式模型的假設主要有:
1、不支付股票紅利。
2、交易成本與稅收為零。
3、投資者可以以無風險利率拆入或拆出資金。
4、市場無風險利率為常數。
5、股票的波動率為常數。
假設在任何一個給定時間,金融資產的價格以事先規定的比例上升或下降。如果資產價格在時間t的價格為S,它可能在時間上升至uS或下降至dS。假定對應資產價格上升至uS,期權價格也上升至Cu,如果對應資產價格下降至dS,期權價格也降至Cd。當金融資產只可能達到這兩種價格時,這一順序稱為二項程序。