孫笑濤

孫笑濤

孫笑濤是國內知名的代數幾何學家。現任中國科學院數學研究所研究員。師從著名代數幾何家肖剛(華東師範大學數學系),后留學海外深造。是2000年國家傑出青年基金獲得者。

個人簡介


孫笑濤
孫笑濤
孫笑濤是國內知名的代數幾何學家。現任中國科學院數學與系統科學研究院研究員。
他曾經和談勝利、陳猛、蔡金星等人師從著名代數幾何家肖剛(華東師範大學數學系),后留學海外深造。
他是數學院國家傑出青年基金獲得者。
孫笑濤在代數幾何研究中取得重要進展,首次揭示了向量叢的穩定性和弗羅賓尼斯(Frobenius)同態兩者之間的深刻聯繫,具有十分重要的理論意義和價值。向量叢的穩定性是代數幾何中非常基本的概念,在數學各領域都有重要應用。這一基本概念曾吸引過眾多國際知名數學家的研究,包括多位菲爾茲獎(Fields)得主, 如芒福德(Mumford)、唐納森(Donaldson)、丘成桐等人。弗羅賓尼斯同態則是特徵p域上代數幾何中最重要的研究對象。
孫笑濤研究員的相關研究成果《向量叢在弗羅賓尼斯同態下的正向像》(Direct Images of Bundles under Frobenius Morphism)於2008年4月在國際著名數學刊物《數學新進展》(Inventiones Mathematicae)正式發表,該刊物被公認為是國際上最頂尖的幾個綜合性數學刊物之一。
孫笑濤研究員的《模空間退化和向量叢的穩定性》項目獲得2012年度國家自然科學獎二等獎。

研究方向:


代數幾何

基金和獎勵:


2008年數學與系統科學研究院突出研究成果獎。
2002年度和2003年度香港RGC基金。
2000年度國家傑出青年基金。國家973項目代數幾何組成員。
1992年中國科學院院長獎學金優秀獎(博士)。

已發表的論文:


Surfaces of general type with canonical pencil, Acta Math. Sinica 33,(1990), no. 6, 769-773.
A note on factorization of birational morphisms, Acta Math. Sinica 34,(1991), no. 6, 749-753.
Algebraic surfaces whose canonical image has a pencil of rational curves of degree two, Math. Z. 209 (1992), no. 1, 67-74.
On canonical fibrations of algebraic surfaces , Manuscripta Math. 83(1994 ), no. 2, 161-169.
Birational morphisms of regular schemes , Compositio Math. 91(1994), no. 3, 325-339.
A regularity theorem on birational morphisms,J. Algebra 178(1995), no. 3, 919-927.
On relative canonical sheaves of arithmetic surfaces, Math. Z. 223 (1996), no. 4, 709-723.
Ramifications on arithmetic schemes, J. Reine Angew. Math. 488 (1997), 37-54.
(with R. Huebl) On the cohomology of regular differential forms and dualizing sheaves, Proc. Amer. Math. Soc. 126 (1998), no. 7, 1931-1940.
(with R. Huebl) Vector bundles on the projective line over a discrete valuation ring and the cohomology of canonical sheaves,Comm. Algebra 27 (1999), no. 7, 3513-3529.
Remarks on semistability of G-bundles in positive characteristic,Compositio Math. 119 (1999), no. 1, 41-52.
Degeneration of moduli spaces and generalized theta functions,J. Algebraic Geom. 9 (2000), no. 3, 459-527.
Degeneration of SL(n)-bundles on a reducible curve.Algebraic geometry in East Asia (Kyoto, 2001), 229-243, World Sci. Publishing, River Edge, NJ, 2002.
Factorization of generalized theta functions in the reducible case.Ark. Mat. 41 (2003), no. 1, 165-202.
(with S.-L. Tan and K. Zuo) Families of K3 surfaces over curves reaching the Arakelov-Yau type upper bounds and modularity,Math. Res. Lett. 10 (2003), no. 2-3, 323-342.
Moduli spaces of SL(r)-bundles on singular irreducible curves.Asian J. Math. 7 (2003), no. 4, 609-625.
(with I-Hsun Tsai) Hitchin's connection and differential operators with values in the determinant bundle.J. Differential Geom. 66 (2004), no. 2, 303-343.
Logarithmic heat projective operators, Comm. Algebra 33(2005), no. 2, 425-454.
Minimal rational curves on moduli spaces of stable bundles.Math. Ann. 331 (2005), no. 4, 925-937.
(with H. Esnault and P. H. Hai) On Nori's fundamental group scheme.Geometry and dynamics of groups and spaces, 377-398,Progr. Math., 265, Birkhäuser, Basel, 2008.
Remarks on Gieseker's degeneration and its normalization.Third International Congress of Chinese Mathematicians. Part 1, 2,177-191, AMS/IP Stud. Adv. Math., 42, pt.1, 2, Amer. Math. Soc., Providence, RI, 2008.
Direct images of bundles under Frobenius morphisms.Invent. Math. Vol. 173 (2008), no. 2, 427--447.
(with N. Mok) Remarks on lines and miminal rational curves.Science in China Serises A: Mathematics Vol. 52 (2009), no. 6, 1-16.