地震波
從震源產生向四外輻射的彈性波
地震波是指從震源產生向四周輻射的彈性波。是三字地質學術語,在中國地質和地球科學和地震學上都有專門術語研究。
地震時,在地球內部出現的彈性波叫作地震波。這就像把石子投入水中,水波會向四周一圈一圈地擴散一樣。
地震波主要包含縱波和橫波。振動方向與傳播方向一致的波為縱波(P波)。來自地下的縱波引起地面上下顛簸振動。振動方向與傳播方向垂直的波為橫波(S波)。來自地下的橫波能引起地面的水平晃動。橫波是地震時造成建築物破壞的主要原因。
由地震震源發出的在地球介質中傳播的彈性波。地球內部存在著地震波速度突變的基幹界面、莫霍面和古登堡面,將地球內部分為地殼、地幔和地核三個圈層。地震震源發出的在地球介質中傳播的彈性波。地震發生時,震源區的介質發生急速的破裂和運動,這種擾動構成一個波源。由於地球介質的連續性,這種波動就向地球內部及表層各處傳播開去,形成了連續介質中的彈性波。
地震波按傳播方式分為三種類型:縱波、橫波和面波。縱波是推進波,地殼中傳播速度為5.5~7千米/秒,最先到達震中,又稱P波,它使地面發生上下振動,破壞性較弱。橫波是剪切波:在地殼中的傳播速度為3.2~4.0千米/秒,第二個到達震中,又稱S波,它使地面發生前後、左右抖動,破壞性較強。面波又稱L波,是由縱波與橫波 在地表相遇后激發產生的混合波。其波長大、振幅強,只能沿地表面傳播,是造成建築物強烈破壞的主要因素。
不同地震波的波長變化很大,長至數千米,短至幾十米,這樣地震波很可能發生頻散。一典型面波從地面到較深處岩石質點運動隨深度的變化。既然為面波,絕大部分波的能量被捕獲在近地表處,到一定深度后岩石實際已不受面波傳過的影響,這一深度取決于波長,波長越長,波動穿入地球越深。一般地講,地球中的岩石越深,穿行其中的地震波速越快,所以長周期(長波長)面波一般比短周期(短波長)的傳播快些。這種波速度的差異,使面波發生頻散,拉開成長長的波列。但與水波相反,較長的面波是首先到達的。
水波當向池塘里扔一塊石頭時水面被擾亂,以石頭入水處為中心有波紋向外擴展。這個波列是水波附近的水的顆粒運動造成的。然而水並沒有朝著水波 傳播的方向流;如果水面浮著一個軟木塞,它將上下跳動,但並不會從原來的位置移走。這個擾動由水粒的簡單前後運動連續地傳下去,從一個顆粒把運動傳給更前面的顆粒。這樣,水波攜帶石擊打破的水面的能量向池邊運移並在岸邊激起浪花。地震運動與此相當類似。我們感受到的搖動就是由地震波的能量產生的彈性岩石 的震動。
假設一彈性體,如岩石,受到打擊,會產生兩類彈性波從源向外傳播。第一類波的物理特性恰如聲波。聲波,乃至超聲波,都是在空氣里由交替的擠壓(推)和擴張(拉)而傳遞。因為液體、氣體和固體岩石一樣能夠被壓縮,同樣類型的波能在水體如海洋和湖泊及固體地球中穿過。在地震時,這種類型的波從斷裂處以同等速度向所有方向外傳,交替地擠壓和拉張它們穿過的岩石,其顆粒在這些波傳播的方向上向前和向後運動,換句話說,這些顆粒的運動是垂直於波前的。向前和向後的位移量稱為振幅。在地震學中,這種類型的波叫P波,即縱波,它是首先到達的波。
地震波
人類可以察覺20~10000赫頻率之間的聲音。一地震的P波可從岩石表面折射到大氣中去,如果其頻率是在聽得見的頻率之內,人耳就可能聽到這個波運行時的轟鳴聲。在波動頻率低於20赫時,人們將感覺到地面振動而聽不到地震波運行的聲音。
最簡單的波是簡諧波,即具有單一頻率和單一振幅的正弦波。實際地震記錄波形包含著多種波長的波,短波長的波疊加在較長波長的波上。由法國物理學家傅里葉首次於1822年將複雜的波列定量表達為各種不同頻率和振幅的簡諧波的疊加。較高階的諧波的頻率是最低頻的基波頻率的整數倍。實際記錄的地面運動可用傅里葉的方法,即由計算機分別考察各諧波組分來進行分析。
彈性模量和波速
均質各向同性的固體可由兩個常數: k和μ來描述其彈性兩種常數數都可表示為單位面積的力。
k是體積模量,表示不可壓縮性。
水:k約為2×1010達因/ 。
μ是剪切模量,表示其剛性。
花崗岩:μ約為1.6×1010達因/ ;
水:μ為0。
密度為ρ的彈性固體內,可以傳播兩種彈性波。
P波,速度vP =√(k+4/3μ)/ρ。
花崗岩: vP=5.5千米/秒;
水: vP=1.5千米/秒。
S波,速度vS=√μ/ρ。
花崗岩:vS=3.0千米/秒;
水: vS=0千米/秒。
像聲、光或水波一樣,地震波也可在一邊界上反射或折射,但和其他波不同的特點是,當地震波入射到地球內的一反射面時,例如一P波以一角度射向邊界面時,它不但分成一反射的P波和一折射的P波,還要產生一反射S波和折射S波,其原因是,在入射點邊界上的岩石不僅受擠壓,還受剪切。
換句話說,一入射P波產生4種轉換波。由一種波型到另一種波型的波型增殖也發生於SV波斜入射於內部邊界時,會產生反射和折射的P波和SV波。在這種情況下反射和折射的S波總是SV型,這是因為當入射的SV波到達時岩石質點在一與地面垂直的入射面里橫向運動。相反,如果入射的S波是水平偏振的SH型,則質點在垂直於入射平面且平行於邊界面的方向上前後運動,在不連續界面上沒有擠壓或鉛垂方向的變形,這樣不會產生相應的新的P波和SV波,只有SH型的一個反射波和一折射波。從物理圖像形象地分析,垂直入射的P波在反射界面上沒有剪切分量,只有反射的P波,根本沒有反射的SV波或SH波。以上討論的波型轉換的種種限制,在全面理解地面運動的複雜性和解釋地震圖中的地震波各種圖像時是至關重要的。
建築在較厚土壤上的,諸如在沿河流沖積河谷中的沉積物上的建築物,地震時易於遭受嚴重破壞,其原因也是波的放大和增強作用。當我們振動連在一起的兩個彈簧時,弱的彈簧將具有較大的振動幅度。類似地,當S波從地下深處傳上來時,穿過剛性較大的深部岩石到剛性較小的沖積物時,沖積河谷剛性小的軟弱岩石和土壤將使振幅增強4倍或更大,取決于波的頻率和沖積層的厚度。在1989年加利福尼亞的洛馬普瑞特地震時,建在砂上和沖填物上的舊金山濱海區的房屋比附近不遠建在堅固地基上相似的房屋破壞更大。
彈性繩的振動狀態
當一地震源釋放能量之後,地球的共振振動在不再受力的方式下持續,這時其振動頻率僅取決於彈性地球的本身性質。確切的數學模擬基本原理,依然類似於對撥動弦樂器的分析。希臘人在2 000多年前就認識到,音樂的諧波只取決於琴弦的長度、密度和繃緊程度(圖2.8)。這種自由振動叫本徵振動。同樣,被撥動了的地球內的本徵振動,取決於其地質構造的大小、密度和整個內部的彈性模量。
彈性球體僅有兩種不同類型的本徵振動。一類叫T型或環型振蕩,僅包括地球岩石的水平移動;岩石的顆粒在球面——地球表面或一些內部界面上往複運動。第二類叫S型或球型振蕩,球型振蕩的運動分量既有沿半徑方向的,也有水平方向的。
地震波
當向岩石立方塊表面施加一均勻壓力時,其體積將減小,其單位體積的體積變化作為所需壓力大小的度量,稱為體積模量。當P波穿過地球內部傳播時發生的就是這種類型的變形;因為它只引起體積變化,所以在流體中也可以發生,與在固體中一樣。通常體積模量越大,P波的速度就越大。第二種變形類型是,在向岩石立方塊體量相對地面上施加方向相反的切向力時,這體積方塊將受剪切而變形,而沒有體積變化。同樣,圓柱狀岩心兩頭受大小相等方向相反力扭曲時也發生這種變形。岩石對剪切或扭曲應力的抵抗越大,其剛性就越大。S波通過剪切岩石而傳播,剪切模量給出其速度的量度。通常是剪切模量越大,S波速度就越大。
P波和S波速度的簡單公式在下面給出。這些表達式與已經提到的波的重要性質一致:因為流體的剪切模量是0,剪切波在水中的速度為0,因為兩個彈性模量總是正的,所以P波比S波傳播得快。因為地球內部的強大壓力,岩石的密度隨深度增大。由於密度在P波和S波速度公式中的分母項上,表面看來,波速度應隨其在地球的深度增加而減小。然而體積模量和剪切模量隨深度而增加,而且比岩石密度增加得更快(但當岩石熔融時,其剪切模量下降至0)。這樣,在我們的地球內部P和S地震波速一般是隨深度而增加的,在第6章中將進一步討論。
雖然某一給定岩石彈性模量是常數,但在一些地質環境里岩石不同方向上的性質可以顯著變化。這種情況叫各向異性,這時,P波和S波向不同方位傳播時具有不同速度。通過這種各向異性性質的探測,可以提供有關地球內部地質狀況的信息,這是當今廣泛研究的問題。但在以下的討論中將限制在各向同性的情況,絕大多數地震運動屬於這種情況。
當水波遇到界面時,如陡岸,會從邊界上反射 回來,形成一列向岸外傳出的水波,與向岸內傳來的水波重疊。當海洋波斜射入淺灘時,波在海水深度變淺時走得較慢,落在海水較深處的波的後面。其結果是波動向淺水彎曲。於是波前在它們擊岸前轉向越來越平行海灘。折射這一名詞描述波傳播中由於傳播路徑上條件變化產生波前方向變化的現象。反射和折射也是光線通過透鏡和稜柱 時人們熟知的性質。
地震波的反射和折射 有時可使地震能量彙集於一地質構造中,如沖積河谷,因為那裡在近地表處有較軟岩石或土壤。稍後將討論的1985年墨西哥城和1989年洛馬普瑞特地震時嚴重破壞的特殊分佈區可以用此原因解釋。其效應與在一個屋子裡面聲波能被牆多次反射形成迴音彙集能量一樣。在地震時,P波和S波從遠處傳來,折射入谷地,它們的速度在剛性小的岩石中減低,它們在谷底下傳播直到接近谷邊緣時,部分能量折射回到盆地中。這樣,波動開始往複傳播,類似池塘 中的水波。不同的P波和S波交織,迴轉的波峰疊加在射入的波峰上,引起幅度的變化。這時每一疊加波的相位是關鍵,因為當交切的波位相相同時能量會加強。通過這種“正干涉”,地震能量在某些頻率波段彙集起來。如果沒有波的幾何擴散和摩擦耗散,即振動的岩石和土壤使一些波能轉化為熱,波的干涉造成的振幅增長很可能造成災難性的後果。
可以從另一種角度去認識在限定的地質構造中地震波的效應。如同在池塘里看到的交叉水波一樣,干涉的地震波可產生駐波,表觀上,干涉波似乎站住不動了,地面似乎純粹作上下震動。同樣地,當弦樂器如豎琴的弦被撥動時,也產生駐波。一般來說,地震時,往往在一河谷或類似的構造中激發許多不同頻率和振幅的P波和S波,鬆軟土壤能增強在許多頻段上的運動,與音樂中的情況一樣,產生顯著的泛音或高階振型。如果布設足夠的地震波記錄儀器,有時能夠識別出這種泛音。
有時大地震可以引起整個地球像鈴一樣振動起來。自18世紀起數學家們分析了一個彈性球的振動。1911年英國數學家勒夫(Love)曾預計,一個像地球同樣大的鋼球將具有周期約一小時的基本振動,並將有周期更小的泛音。然而在勒夫的預言過半個多世紀以後,地震學家對即使是最大的地震是否真具有足夠的能量去搖動地球,併產生深沉的地震音樂仍然沒有把握。不難想象,地震學家們首次觀測到地球自由振蕩時是如何驚喜若狂。1960年5月智利大地震時,在世界各地當時僅有的少數特長周期的地震儀上,清楚地記錄到極長周期的地震波動持續了許多天,測得的振動最長周期是53分,與勒夫預計的60分相差不多。這些地面運動記錄的分析首次給出了明確的證據,理論上預計的地球的自由振蕩確實被觀測到了。
當P波和S波到達地球的自由面或位於層狀地質構造的界面時,在一定條件下會產生其他類型地震波。這些波中最重要的是瑞利波和勒夫波。這兩類波沿地球表面傳播;岩石振動振幅 隨深度增加而逐漸減小至零。由於這些面波的能量被捕獲在表面才能沿著或近地表傳播,否則這些波將向下反射進入地球,在地表只有短暫的生命。這些波類似在倫敦的聖保羅大教堂“耳語長廊”(譯者註:或中國天壇 迴音壁)的牆面上捕獲的聲波,只有耳朵靠近牆面時才能聽到從對面牆上傳來的低語。
勒夫波是地震面波中最簡單的一種類型。它們是以1912年首次描述它們的勒夫的姓名命名的。如圖2.9所示,這個類型的波使岩石質點運動類似SH波,運動沒有垂向位移。岩石運動在一垂直於傳播方向上在水平面內從一邊到另一邊。雖然勒夫波不包括垂直地面運動的波,但它們在地震中可以成為最具破壞性的,因為它們常具有很大振幅,能在建築物地基之下造成水平剪切。
相反,瑞利面波具有相當不同的地面運動。於1885年首次由瑞利(LordRayleigh)描述,它們是地震波中最近似水波的。岩石質點向前、向上、向後和向下運動,沿波的傳播方向作一垂直平面,質點在該平面內運動,描繪出一個橢圓。勒夫波和瑞利波的速度總比P波小,與S波的速度相等或小一些。從地面運動類似性看,球型(S型)自由振蕩是傳播的瑞利波的駐波,環型(T型)自由振蕩則與勒夫波對應。
由於不同地震波類型的速度不同,它們到達時間也就先後不同,從而形成一組序列,它解釋了地震時地面開始搖晃后經歷的感覺。記錄儀器則可以實際看到地面運動的狀態。
從震源首先到達某地的第一波是“推和拉”的P波。它們一般以陡傾角出射地面,因此造成鉛垂方向的地面運動,垂直搖動一般比水平搖晃容易經受住,因此一般它們不是最具破壞性的波。因為S波的傳播速度約為P波的一半,相對強的S波稍晚才到達。它包括SH和SV波動:前者在水平平面上,後者在垂直平面上振動。S波比P波持續時間長些。地震主要通過P波的作用使建築物上下搖動,通過S波的作用側向晃動。
在日本記錄的震級為1.8的局部小震;下邊3條是在德國記錄到的挪威海中發生的5.1級地震;地震波到達的順序是相同的,雖然小震沒有面波發育,每一地震用3條地震記錄圖代表,每條記錄一個不同的搖動方向:東-西(E)、北-南(N)和上-下(Z)
正好是S波之後或與S波同時,勒夫波開始到達。地面開始垂直於波動傳播方向橫向搖動。儘管目擊者往往聲稱根據搖動方向可以判定震源方向,但勒夫波使得憑地面搖動的感覺判斷震源方向發生困難。下一個是橫過地球表面傳播的瑞利波,它使地面在縱向和垂直方向都產生搖動。這些波可能持續許多旋迴,引起大地震時熟知的描述為“搖滾運動”。因為它們隨著距離衰減的速率比P波或S波慢,在距震源距離大時感知的或長時間記錄下來的主要是面波。地震記錄,勒夫波和瑞利波比P波和S波持續的時間長5倍多。
類似於音樂樂曲最後一節,面波波列之後構成地震記錄的重要部分,稱之為地震尾波。地震波的尾部事實上包含著沿散射的路徑穿過複雜岩石構造的P波、S波、勒夫波和瑞利波的混合波。尾波中繼續的波動旋迴對於建築物的破壞可能起到落井下石的作用,促使已被早期到達的較強S波削弱的建築物倒塌。
面波擴展成為長長的尾波是波的頻散一例。各種類型的波通過物理性質或尺度變化的介質時都會發生這一效應。細看水塘中的水波顯示,具短波長的波紋傳播在較長波長的波紋前面。波峰的速度不是常數而取決于波的波長。當一塊石頭打到水中之後,隨時間的發展,原來的波開始按波長不同被區分開來,彈性岩石運動的形態
彈性岩石與空氣有所不同,空氣可受壓縮但不能剪切,而彈性物質通過使物體剪切和扭動,可以允許第二類波傳播。地震產生這種第二個到達的波叫S波,即橫波。在S波通過時,岩石的表現與在P波傳播過程中的表現相當不同。因為S波涉及剪切而不是擠壓,使岩石顆粒的運動橫過運移方向。這些岩石運動可在一垂直向或水平面里,它們與光波的橫向運動相似。P和S波同時存在使地震波列成為具有獨特的性質組合,使之不同於光波或聲波 的物理表現。因為液體或氣體內不可能發生剪切運動,S波不能在它們中傳播。P和S波這種截然不同的性質可被用來探測地球深部流體帶的存在。
帶偏光眼鏡以減弱散射光的人可能熟悉光的偏振現象,只有S波具有偏振現象。只有那些在某個特定平面里橫向振動(上下、水平等)的那些光波能穿過偏光透鏡。傳過的光波稱之為平面偏振光。太陽光穿過大氣是沒有偏振的,即沒有光波振動的優選的橫方向。然而晶體的折射或通過特殊製造的塑料如偏光眼鏡,可使非偏振光成為平面偏振光。
當S波穿過地球時,他們遇到構造不連續界面時會發生折射或反射,並使其振動方向發生偏振。當發生偏振的S波的岩石顆粒僅在水平面中運動時,稱為SH波。當岩石顆粒在包含波傳播方向的垂直平面里運動時,這種S波稱為SV波。大多數岩石,如果不強迫它以太大的幅度振動,具有線性彈性,即由於作用力而產生的變形隨作用力線性變化。這種線性彈性表現稱為服從虎克定律,是以與牛頓同時代的英國數學家羅伯特·虎克(1635~1703年)而命名的。這種線性關係由加重物的彈簧伸展來表示。如果重物的質量加倍,線性彈簧的伸展也加倍,如果重物回到原來大小,則彈簧回到原來位置。相似地,地震時岩石將對增大的力按比例地增加變形。在大多數情況下,變形將保持在線彈性範圍,在搖動結束時岩石將回到原來位置。然而在地震事件中有時發生重要的例外表現,例如,當強搖動發生於軟土壤時,會殘留永久的變形,波動變形后並不總能使土壤回到原位,在這種情況下,地震烈度較難預測。我們將在本書後面談到這些關鍵的非線性效果。
彈簧的運動提供了極好的啟示,說明當地震波通過岩石時能量是如何變化的。與彈簧壓縮或伸張有關的能量為彈性勢,與彈簧部件運動有關的能量是動能。任何時間的總能量都是彈性能量和運動能量二者之和。對於理想的彈性介質來說,總能量是一個常數。在最大波幅的位置,能量全部為彈性勢能;當彈簧振蕩到中間平衡位置時,能量全部為動能。曾假定沒有摩擦或耗散力存在,所以一旦往複彈性振動開始,它將以同樣幅度持續下去。這當然是一個理想的情況。在地震時,運動的岩石間的摩擦逐漸生熱而耗散一些波動的能量,除非有新的能源加進來,像振動的彈簧一樣,地球的震動將逐漸停息。對地震波能量耗散的測量提供了地球內部非彈性特性的重要信息,然而除摩擦耗散之外,地震震動隨傳播距離增加而逐漸減弱現象的形成還有其他因素。
由於聲波傳播時其波前面為一擴張的球面,攜帶的聲音隨著距離增加而減弱。與池塘外擴的水波相似,我們觀察到水波的高度或振幅,向外也逐漸減小。波幅減小是因為初始能量傳播越來越廣而產生衰減,這叫幾何擴散。這種類型的擴散也使通過地球岩石的地震波減弱。除非有特殊情況,否則地震波從震源向外傳播得越遠,它們的能量就衰減得越多。
2015年3月,美國科學家利用地震波的速度繪製的模擬圖,揭示地下結構。這幅模擬圖展示了太平洋下方的地幔,較慢的地震波呈紅色和橙色,較快的地震波呈綠色和藍色。展現在地球內部的3D模擬圖由普林斯頓大學教授傑羅恩-特魯普領導的研究小組繪製。他們進行此項研究的目標是在年底前繪製整個地幔的地圖。地幔的深度達到1865英里(約合3000公里)。
地震波主要分為兩種,一種是表面波,一種是實體波。表面波只在地表傳遞,實體波能穿越地球內部。
● 實體波(Body Wave):在地球內部傳遞,又分成P波和S波兩種。
● ● P波:P代表主要(Primary)或壓縮(Pressure),為一種縱波,粒子振動方向和波前進方平行,在所有地震波中,前進速度最快,也最早抵達。P波能在固體、液體或氣體中傳遞。
● ● S波:S意指次要(Secondary)或剪力(Shear),前進速度僅次於P波,粒子振動方向垂直於波的前進方向,是一種橫波。S波只能在固體中傳遞,無法穿過液態外核
利用P波和S波的傳遞速度不同,利用兩者之間的走的時差作簡單的地震定位。
● 表面波(Surface Wave):淺源地震所引起的表面波最明顯。表面波有低頻率、高震幅和具頻散(Dispersion)的特性,只在近地表傳遞,是最有威力的地震波。
● ● 勒夫波(Love Wave):粒子振動方向和波前進方向垂直,但振動只發生在水平方向上,沒有垂直分量,類似於S波,差別是側向震動振幅會隨深度增加而減少。
● ● 瑞利波(Rayleigh wave):又稱為地滾波,粒子運動方式類似海浪,在垂直面上,粒子呈逆時針橢圓形振動,震動振幅一樣會隨深度增加而減少。