共找到14條詞條名為複變函數論的結果 展開
複變函數論
鍾玉泉主編書籍
《複變函數論》是高等教育出版社出版的一本圖書,作者是鍾玉泉。
複變函數論
作者:鍾玉泉
出版社:高等教育出版社
副標題:第三版
出版年:2004年1月
頁數:378
定價:18.70
ISBN:9787040129434
《複變函數論(第3版)》是在第二版的基礎上,集擷作者多年教學心得和科研成果,並根據1988年全國複變函數編寫提綱討論會精神修訂的。此次修訂著眼於進一步提高質量,更加適應多數學校的教學需要,保留第二版闡述細緻,便於自學的特點,對已發現的錯誤和不妥之處,予以改正。《複變函數論(第3版)》內容包括:複數與複變函數、解析函數、複變函數的積分、解析函數的冪級數表示法、解析函數的洛朗展式與孤立奇點、留數理論及其應用、共形映射、解析延拓和調和函數共九章。對於加上*號內容,供學有餘力的學生選學。《複變函數論(第3版)》可作為高等師範院校數學系的教材,也可為其他理工院校、教育學院所選用。
引言
第一章 複數與複變函數
§1.複數
1.複數域
2.複平面
3.複數的模與輻角
4.複數的乘冪與方根
5.共軛複數
6.複數在幾何上的應用舉例
§2.複平面上的點集
1.平面點集的幾個基本概念
2.區域與若爾當(Jordan)曲線
§3.複變函數
1.複變函數的概念
2.複變函數的極限與連續性
§4.復球面與無窮遠點
1.復球面
2.擴充複平面上的幾個概念
第一章習題
第二章 解析函數
§1.解析函數的概念與柯西-黎曼方程
1.複變函數的導數與微分
2.解析函數及其簡單性質
3.柯西-黎曼方程
§2.初等解析函數
1.指數函數
2.三角函數與雙曲函數
§3.初等多值函數
1.根式函數
2.對數函數
3.一般冪函數與一般指數函數
4.具有多個有限支點的情形
5.反三角函數與反雙曲函數
第二章習題
第三章 複變函數的積分
§1.復積分的概念及其簡單性質
1.複變函數積分的定義
2.複變函數積分的計算問題
3.複變函數積分的基本性質
§2.柯西積分定理
1.柯西積分定理
2.柯西積分定理的古莎證明
3.不定積分
4.柯西積分定理的推廣
5.柯西積分定理推廣到復周線的情形
§3.柯西積分公式及其推論
1.柯西積分公式
2.解析函數的無窮可微性
3.柯西不等式與劉維爾(Liouville)定理
4.摩勒拉(Morera)定理
5.柯西型積分
§4.解析函數與調和函數的關係
§5.平面向量場——解析函數的應用(一)
1.流量與環量
2.無源、漏的無旋流動
3.復勢
第三章習題
第四章 解析函數的冪級數表示法
§1.復級數的基本性質
1.複數項級數
2.一致收斂的複函數項級數
3.解析函數項級數
§2.冪級數
1.冪級數的斂散性
2.收斂半徑R的求法、柯西-阿達馬(Hadamard)公式
3.冪級數和的解析性
§3.解析函數的泰勒(Taylor)展式
1.泰勒定理
2.冪級數的和函數在其收斂圓周上的狀況
3.一些初等函數的泰勒展式
§4.解析函數零點的孤立性及惟一性定理
1.解析函數零點的孤立性
2.惟一性定理
3.最大模原理
第四章習題
第五章 解析函數的洛朗(Laurent)展式與孤立奇點
§1.解析函數的洛朗展式
1.雙邊冪級數
2.解析函數的洛朗展式
3.洛朗級數與泰勒級數的關係
4.解析函數在孤立奇點鄰域內的洛朗展式
§2.解析函數的孤立奇點
1.孤立奇點的三種類型
2.可去奇點
3.施瓦茨(Schwarz)引理
4.極點
5.本質奇點
6.皮卡(Picard)定理
§3.解析函數在無窮遠點的性質
§4.整函數與亞純函數的概念
1.整函數
2.亞純函數
§5.平面向量場——解析函數的應用(二)
1.奇點的流體力學意義
2.在電場中的應用舉例
第五章習題
第六章 留數理論及其應用
第七章 共形映射
第八章 解析延拓
第九章 調和函數