橢圓積分
數學領域中的積分學概念
在積分學中,橢圓積分最初出現於橢圓的弧長有關的問題中。Guilio Fagnano和歐拉是最早的研究者。現代數學將橢圓積分定義為:可以表達為如下形式的任何函數f的積分---其中R是其兩個參數的有理函數,P是一個無重根的3或4階多項式的平方根,而c是一個常數。通常,橢圓積分不能用基本函數表達。這個一般規則的例外出現在P有重根的時候,或者是R(x,y)沒有y的奇數冪時。但是,通過適當的簡化公式,每個橢圓積分可以變為只涉及有理函數和三個經典形式的積分。(也即,第一,第二,和第三類的橢圓積分)。
橢圓積分
與此等價,用雅可比的形式,可以設;則
其中,假定任何有豎直條出現的地方,緊跟豎直條的變數是(如上定義的)參數;而且,當反斜杠出現的時候,跟著出現的是模角。在這個意義下,,這裡的記法來自標準參考書Abramowitz and Stegun。使用限界符;| \是橢圓積分中的傳統做法。
但是,還有許多不同的常規用於橢圓積分的記法。取值為橢圓積分的函數沒有(象平方根,正弦和誤差函數那樣的)標準和唯一的名字。甚至關於該領域的文獻也常常採用不同的記法。Gradstein, Ryzhik, Eq.(8.111)]採用。該記法和這裡的;以及下面的等價。
橢圓積分
注意
其中u如上文所定義:由此可見,雅可比橢圓函數是橢圓積分的逆。
加法公式
加法公式
性質
第一類不完全橢圓積分的導數
第二類不完全橢圓積分E是
與此等價,採用另外一個記法(作變數替換
),
其它關係包括
第三類不完全橢圓積分是
或者
或者
數字n稱為特徵數,可以取任意值,和其它參數獨立。但是要注意對於任意是無窮的。
如果幅度為pi/2或者x=1,則稱橢圓積分為完全的。第一類完全橢圓積分K可以定位為
或者
它是第一類不完全橢圓積分的特例:
這個特例可以表達為冪級數
它等價於
其中n!!表示雙階乘。採用高斯的超幾何函數,第一類完全橢圓積分可以表達為
第一類完全橢圓積分有時稱為四分周期。它可以採用算術幾何平均值計算。
特殊值
第一類完全橢圓積分的導數}-
第二類完全橢圓積分E可以定義為
或者
它是第二類不完全橢圓積分的特殊情況:
它可以用冪級數表達
也就是
用高斯超幾何函數表示的話,第二類完全橢圓積分可以寫作
特殊值
第二類完全橢圓積分的導數
橢圓積分
橢圓積分
第三類完全橢圓積分和第一類橢圓積分之間的關係
橢圓積分
特殊值
橢圓積分