物流系統優化

物流系統優化

物流系統優化是指確定物流系統發展目標,並設計達到該目標的策略以及行動的過程。它依據一定的方法、程度和原則,對與物流系統相關的因素,進行優化組合,從而達到優化的目的。

意義


改善物流系統,既是企業自我完善的需要,也是適應市場變化的需要。顧客需求愈來愈突出個性化,導致不確定性增加,迫使企業對快速變化的市場快速準確地作出正確的反應。另外,日益激烈的市場競爭給企業帶來了更大的壓力。隨著經濟全球化和知識經濟時代的到來,無國界化企業經營的趨勢愈來愈明顯,整個市場競爭呈現出明顯的國際化和一體化。與此同時,高新技術的迅猛發展提高了生效效率,縮短了產品更新換代周期,加劇了市場競爭的激烈程度。因此,企業物流管理如何適應新的競爭環境已成為我國企業關注的焦點。通過對我國企業面臨的環境和挑戰的分析,從而要求企業必須把物流系統優化提上日程。
現代物流系統中,物料的搬運系統及組織管理的工作,常常要求對物資進行統一分配、合理調運、正確規劃、全面安排,經常會有多種解決方案。例如,制訂最佳的投資計劃和生產計劃;認為選擇最佳的生產布局和物料搬運系統流程;確定產品的最佳的配套生產;制訂最佳的物質調運計劃等。衡量最佳方案的標準可以從不同的角度出發,以求得某項指標達到最大值或最小值。例如,要求工廠企業的勞動生產效率最高、資源的利用率最高等。這些都要是物流系統優化所要研究和解決的問題。

原則


對於大多數的企業來說,物流系統優化是其降低供應鏈運營總成本的最顯著的商機所在。由物流優化技術給出的解決方案,除非現場操作人員能夠執行,管理人員能夠確認預期的投資回報已經實現,否則就是不成功的。對於大多數的企業來說,物流系統優化是其降低供應鏈運營總成本的最顯著的商機所在。但是,物流系統優化過程不僅要投入大量的資源,而且是一項需要付出巨大努力、克服困難和精心管理的過程。
美國領先的貨運計劃解決方案供應商Velant公司的總裁和CEO-Don Ratliff博士集30餘年為企業提供貨運決策優化解決方案的經驗,在2002年美國物流管理協會(CLM)年會上提出了"物流優化的10項基本原則",並認為通過物流決策和運營過程的優化,企業可以獲得降低物流成本10%-40%的商業機會。這種成本的節約必然轉化為企業投資回報率的提高。
1.(Objectives):設定的目標必須是定量的和可測評的。
制定目標是確定我們預期願望的一種方法。要優化某個事情或過程,就必須確定怎樣才能知道目標對象已經被優化了。使用定量的目標,計算機就可以判斷一個物流計劃是否比另一個更好。企業管理層就可以知道優化的過程是否能夠提供一個可接受的投資回報率(Return On Investment)。
2.模型(Models):模型必須忠實地反映實際的物流過程。
建立模型是把物流運營要求和限制條件翻譯成計算機能夠理解和處理的某種東西的方法。例如,我們需要一個模型來反映貨物是如何通過組合裝上卡車的。一個非常簡單的模型,不能充分地反映實際的物流情況。如果使用簡單的重量或體積模型,許多計算機認為合適的載荷將無法實際裝車,而實際上更好的裝載方案會由於計算機認為不合適而被放棄。所以,如果模型不能忠實地反映裝載的過程,則由優化系統給出的裝車解決方案要麼無法實際執行,要麼在經濟上不合算。
3.數據(Data):數據必須準確、及時和全面。
數據驅動了物流系統的優化過程。如果數據不準確,或有關數據不能夠及時地輸入系統優化模型,則由此產生的物流方案就是值得懷疑的。對必須產生可操作的物流方案的物流優化過程來說,數據也必須全面和充分。例如,如果卡車的體積限制了載荷的話,使用每次發貨的重量數據就是不充分的。
4.集成(Integration):系統集成必須全面支持數據的自動傳遞。
因為對物流系統優化來說,要同時考慮大量的數據,所以,系統的集成是非常重要的。比如,要優化每天從倉庫向門店送貨的過程就需要考慮訂貨、客戶、卡車、駕駛員和道路條件等數據。人工輸入數據的方法,哪怕是只輸入很少量的數據,也會由於太花時間和太容易出錯而不能對系統優化形成支持。
5.表述(Delivery):系統優化方案必須以一種便於執行、管理和控制的形式來表述。
由物流優化技術給出的解決方案,除非現場操作人員能夠執行,管理人員能夠確認預期的投資回報已經實現,否則就是不成功的。現場操作要求指令簡單明了,要容易理解和執行。管理人員則要求有關優化方案及其實施效果在時間和資產利用等方面的關鍵標桿信息更綜合、更集中。
6.演演算法(Algorithms):演演算法必須靈活地利用獨特的問題結構。
不同物流優化技術之間最大的差別就在於演演算法的不同(藉助於計算機的過程處理方法通常能夠找到最佳物流方案)。關於物流問題的一個無可辯駁的事實是每一種物流優化技術都具有某種特點。為了在合理的時間段內給出物流優化解決方案就必須藉助於優化的演演算法來進一步開發優化技術。因此,關鍵的問題是:(1)這些不同物流優化技術的特定的問題結構必須被每一個設計物流優化系統的分析人員認可和理解;(2)所使用的優化演演算法應該具有某種彈性,使得它們能夠被"調整"到可以利用這些特定問題結構的狀態。物流優化問題存在著大量的可能解決方案(如,對於40票零擔貨運的發貨來說,存在著1萬億種可能的裝載組合)。如果不能充分利用特定的問題結構來計算,則意味著要麼演演算法將根據某些不可靠的近似計算給出一個方案,要麼就是計算的時間極長(也許是無限長)。
7.計算(Computing):計算平台必須具有足夠的容量在可接受的時間段內給出優化方案。
因為任何一個現實的物流問題都存在著大量可能的解決方案,所以,任何一個具有一定規模的問題都需要相當的計算能力支持。這樣的計算能力應該使得優化技術既能夠找到最佳物流方案,也能夠在合理的時間內給出最佳方案。顯然,對在日常執行環境中運行的優化技術來說,它必須在幾分鐘或幾小時內給出物流優化方案(而不是花幾天的計算時間)。採取動用眾多計算機同時計算的強大的集群服務和并行結構的優化演演算法,可以比使用單體PC機或基於工作站技術的演演算法更快地給出更好的物流優化解決方案。
8.人員(People):負責物流系統優化的人員必須具備支持建模、數據收集和優化方案所需的領導和技術專長。
優化技術是"火箭科學",希望火箭發射后能夠良好地運行而沒有"火箭科學家"來保持它的狀態是不可能的。這些專家必須確保數據和模型的正確,必須確保技術系統在按照設計的狀態工作。現實的情況是,如果缺乏具有適當技術專長和領導經驗的人的組織管理,複雜的數據模型和軟體系統要正常運行並獲得必要的支持是不可能的。沒有他們大量的工作,物流優化系統就難以達到預期的目標。
9.過程(Process):商務過程必須支持優化並具有持續的改進能力。
物流優化需要應對大量的在運營過程中出現的問題。物流目標、規則和過程的改變是系統的常態。所以,不僅要求系統化的數據監測方法、模型結構和演演算法等能夠適應變化,而且要求他們能夠捕捉機遇並促使系統變革。如果不能在實際的商務運行過程中對物流優化技術實施監測、支持和持續的改進,就必然導致優化技術的潛力不能獲得充分的發揮,或者只能使其成為"擺設"。
10.回報(ROI):投資回報必須是可以證實的,必須考慮技術、人員和操作的總成本。
要證實物流系統優化的投資回報率,必須把握兩件事情:
一是誠實地估計全部的優化成本;二是將優化技術給出的解決方案逐條與標桿替代方案進行比較。
在計算成本的時候,企業對使用物流優化技術的運營成本存在著強烈的低估現象,尤其是在企業購買的是"供業餘愛好者自己開發使用"的基於PC的軟體包的情況下。這時要求企業擁有一支訓練有素的使用者團隊和開發支持人員在實際運行的過程中調試技術系統。在這種情況下,有效使用物流優化技術的實際年度運營成本極少有低於技術採購初始成本的(如軟體使用許可費、工具費等)。如果物流優化解決方案的總成本在第二年是下降的,則很可能該解決方案的質量也會成比例的下降。
在計算回報的時候,要確定物流優化技術系統的使用效果,必須做三件事:一是在實施優化方案之前根據關鍵績效指標(Key Performance Indicators)測定基準狀態;二是將實施物流優化技術解決方案以後的結果與基準狀態進行比較;三是對物流優化技術系統的績效進行定期的評審。
要準確地計算投資回報率必須採用良好的方法來確定基準狀態,必須對所投入的技術和人力成本有透徹的了解,必須測評實際改進的程度,還必須持續地監測系統的行為績效。但是,因為績效數據很少直接可得,而且監測過程需要不間斷的實施,所以,幾乎沒有哪個公司能夠真正了解其物流優化解決方案的實際效果。

方法


常用的物流系統優化方法有:
(1)數學規劃法。
包括靜態優化和動態優化規劃法。主要運用線性規劃解決物資調運、分配和人員分派的優化問題;運用整數規劃法選擇適當的廠(庫)址和流通中心位置;採用掃描法對配送路線進行掃描求優。
(2)動態規劃法。
(3)探索法。
(4)分割法
另外,運籌學中的博弈論和統計決策也是較好的優化方法。