共找到3條詞條名為有限單元法的結果 展開
有限單元法
數學術語
有限單元法,是一種有效解決數學問題的解題方法。其基礎是變分原理和加權余量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式,藉助於變分原理或加權余量法,將微分方程離散求解。採用不同的權函數和插值函數形式,便構成不同的有限元方法。有限元方法最早應用於結構力學,後來隨著計算機的發展慢慢用於流體力學的數值模擬。
在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元上的近似解構成。在河道數值模擬中,常見的有限元計算方法是由變分法和加權余量法發展而來的里茲法和伽遼金法、最小二乘法等。根據所採用的權函數和插值函數的不同,有限元方法也分為多種計算格式。從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格,從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。不同的組合同樣構成不同的有限元計算格式。對於權函數,伽遼金(Galerkin)法是將權函數取為逼近函數中的基函數;最小二乘法是令權函數等於余量本身,而內積的極小值則為對代求係數的平方誤差最小;在配置法中,先在計算域內選取N個配置點。令近似解在選定的N個配置點上嚴格滿足微分方程,即在配置點上令方程余量為0。插值函數一般由不同次冪的多項式組成,但也有採用三角函數或指數函數組成的乘積表示,但最常用的多項式插值函數。有限元插值函數分為兩大類,一類只要求插值多項式本身在插值點取已知值,稱為拉格朗日(Lagrange)多項式插值;另一種不僅要求插值多項式本身,還要求它的導數值在插值點取已知值,稱為哈密特(Hermite)多項式插值。單元坐標有笛卡爾直角坐標系和無因次自然坐標,有對稱和不對稱等。常採用的無因次坐標是一種局部坐標系,它的定義取決於單元的幾何形狀,一維看作長度比,二維看作面積比,三維看作體積比。在二維有限元中,三角形單元應用的最早,近來四邊形等參元的應用也越來越廣。對於二維三角形和四邊形電源單元,常採用的插值函數為有Lagrange插值直角坐標系中的線性插值函數及二階或更高階插值函數、面積坐標系中的線性插值函數、二階或更高階插值函數等。
建立積分方程
根據變分原理或方程余量與權函數正交化原理,建立與微分方程初邊值問題等價的積分表達式,這是有限元法的出發點。
區域單元剖分
根據求解區域的形狀及實際問題的物理特點,將區域剖分為若干相互連接、不重疊的單元。區域單元劃分是採用有限元方法的前期準備工作,這部分工作量比較大,除了給計算單元和節點進行編號和確定相互之間的關係之外,還要表示節點的位置坐標,同時還需要列出自然邊界和本質邊界的節點序號和相應的邊界值。
確定單元基函數
根據單元中節點數目及對近似解精度的要求,選擇滿足一定插值條件的插值函數作為單元基函數。有限元方法中的基函數是在單元中選取的,由於各單元具有規則的幾何形狀,在選取基函數時可遵循一定的法則。
單元分析
將各個單元中的求解函數用單元基函數的線性組合表達式進行逼近;再將近似函數代入積分方程,並對單元區域進行積分,可獲得含有待定係數(即單元中各節點的參數值)的代數方程組,稱為單元有限元方程。
總體合成
在得出單元有限元方程之後,將區域中所有單元有限元方程按一定法則進行累加,形成總體有限元方程。
邊界條件的處理
一般邊界條件有三種形式,分為本質邊界條件(狄里克雷邊界條件)、自然邊界條件(黎曼邊界條件)、混合邊界條件(柯西邊界條件)。對於自然邊界條件,一般在積分表達式中可自動得到滿足。對於本質邊界條件和混合邊界條件,需按一定法則對總體有限元方程進行修正滿足。
解有限元方程
根據邊界條件修正的總體有限元方程組,是含所有待定未知量的封閉方程組,採用適當的數值計算方法求解,可求得各節點的函數值。