指數分佈

指數分佈

在概率理論和統計學中,指數分佈(也稱為負指數分佈)是描述泊松過程中的事件之間的時間的概率分佈,即事件以恆定平均速率連續且獨立地發生的過程。這是伽馬分佈的一個特殊情況。它是幾何分佈的連續模擬,它具有無記憶的關鍵性質。除了用於分析泊松過程外,還可以在其他各種環境中找到。

指數分佈與分佈指數族的分類不同,後者是包含指數分佈作為其成員之一的大類概率分佈,也包括正態分佈二項分佈,伽馬分佈,泊松分佈等等。

指數函數的一個重要特徵是無記憶性(Memoryless Property,又稱遺失記憶性)。這表示如果一個隨機變數呈指數分佈,當s,t>0時有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的壽命,已知元件使用了t小時,它總共使用至少s+t小時的條件概率,與從開始使用時算起它使用至少s小時的概率相等。

定義


概率密度函數
其中λ > 0是分佈的一個參數,常被稱為率參數(rate parameter)。即每單位時間內發生某事件的次數。指數分佈的區間是[0,∞)。如果一個隨機變數X呈指數分佈,則可以寫作:。
在不同的教材有不同的寫法,,因此概率密度函數,分佈函數和期望方差有兩種寫法。
其中θ>0為常數,則稱X服從參數θ的指數分佈。

分佈函數


指數分佈的分佈函數由下式給出:
有:

數學期望


期望值:
比方說:如果你平均每個小時接到2次電話,那麼你預期等待每一次電話的時間是半個小時。

方差


方差:

記號


若隨機變數x服從參數為λ的指數分佈,則記為。

特性


無記憶性

指數函數的一個重要特徵是無記憶性(Memoryless Property,又稱遺失記憶性)。這表示如果一個隨機變數呈指數分佈
當時有
即,如果T是某一元件的壽命,已知元件使用了t小時,它總共使用至少小時的條件概率,與從開始使用時算起它使用至少s小時的概率相等。

分位數

參數λ的四分位數函數(Quartile function)是:
第一四分位數:
中位數:
第三四分位數:

分佈


在概率論和統計學中,指數分佈(Exponential distribution)是一種連續概率分佈。指數分佈可以用來表示獨立隨機事件發生的時間間隔,比如旅客進機場的時間間隔、中文維基百科新條目出現的時間間隔等等。
許多電子產品的壽命分佈一般服從指數分佈。有的系統的壽命分佈也可用指數分佈來近似。它在可靠性研究中是最常用的一種分佈形式。指數分佈是伽瑪分佈和威布爾分佈的特殊情況,產品的失效是偶然失效時,其壽命服從指數分佈。
指數分佈可以看作當威布爾分佈中的形狀係數等於1的特殊分佈,指數分佈的失效率是與時間t無關的常數,所以分佈函數簡單。

應用


在電子元器件的可靠性研究中,通常用於描述對發生的缺陷數或系統故障數的測量結果。這種分佈表現為均值越小,分佈偏斜得越厲害。
指數分佈應用廣泛,在日本的工業標準和美國軍用標準中,半導體器件的抽驗方案都是採用指數分佈。此外,指數分佈還用來描述大型複雜系統(如計算機)的平均故障間隔時間MTBF的失效分佈。但是,由於指數分佈具有缺乏“記憶”的特性.因而限制了它在機械可靠性研究中的應用,所謂缺乏“記憶”,是指某種產品或零件經過一段時間t0的工作后,仍然如同新的產品一樣,不影響以後的工作壽命值,或者說,經過一段時間t0的工作之後,該產品的壽命分佈與原來還未工作時的壽命分佈相同,顯然,指數分佈的這種特性,與機械零件的疲勞、磨損、腐蝕、蠕變等損傷過程的實際情況是完全矛盾的,它違背了產品損傷累積和老化這一過程。所以,指數分佈不能作為機械零件功能參數的分佈形式。
指數分佈雖然不能作為機械零件功能參數的分佈規律,但是,它可以近似地作為高可靠性的複雜部件、機器或系統的失效分佈模型,特別是在部件或機器的整機試驗中得到廣泛的應用。
指數分佈的圖形表面上看與冪律分佈很相似,實際兩者有極大不同,指數分佈的收斂速度遠快過冪律分佈。
指數分佈的參數為λ,則指數分佈的期望為,方差為。