步進電機

感應電機的一種

徠步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角。

簡介


步進電機
步進電機
步進電機又稱為脈衝電機,基於最基本的電磁鐵原理,它是一種可以自由迴轉的電磁鐵,其動作原理是依靠氣隙磁導的變化來產生電磁轉矩。其原始模型是起源於1830年至1860年間。1870年前後開始以控制為目的的嘗試,應用於氫弧燈的電極輸送機構中。這被認為是最初的步進電機。二十世紀初,在電話自動交換機中廣泛使用了步進電機。由於西方資本主義列強爭奪殖民地,步進電機在缺乏交流電源的船舶和飛機等獨立系統中得到了廣泛的使用。二十世紀五十年代後期晶體管的發明也逐漸應用在步進電機上,對於數字化的控制變得更為容易。到了八十年代后,由於廉價的微型計算機以多功能的姿態出現,步進電機的控制方式更加靈活多樣。
步進電機相對於其它控制用途電機的最大區別是,它接收數字控制信號(電脈衝信號)並轉化成與之相對應的角位移或直線位移,它本身就是一個完成數字模式轉化的執行元件。而且它可開環位置控制,輸入一個脈衝信號就得到一個規定的位置增量,這樣的所謂增量位置控制系統與傳統的直流控制系統相比,其成本明顯減低,幾乎不必進行系統調整。步進電機的角位移量與輸入的脈衝個數嚴格成正比,而且在時間上與脈衝同步。因而只要控制脈衝的數量、頻率和電機繞組的相序,即可獲得所需的轉角、速度和方向。
我國的步進電機在二十世紀七十年代初開始起步,七十年代中期至八十年代中期為成品發展階段,新品種和高性能電機不斷開發,目前,隨著科學技術的發展,特別是永磁材料、半導體技術、計算機技術的發展,使步進電機在眾多領域得到了廣泛應用。
步進電機控制技術及發展概況
作為一種控制用的特種電機,步進電機無法直接接到直流或交流電源上工作,必須使用專用的驅動電源(步進電機驅動器)。在微電子技術,特別計算機技術發展以前,控制器(脈衝信號發生器)完全由硬體實現,控制系統採用單獨的元件或者集成電路組成控制迴路,不僅調試安裝複雜,要消耗大量元器件,而且一旦定型之後,要改變控制方案就一定要重新設計電路。這就使得需要針對不同的電機開發不同的驅動器,開發難度和開發成本都很高,控制難度較大,限制了步進電機的推廣。
由於步進電機是一個把電脈衝轉換成離散的機械運動的裝置,具有很好的數據控制特性,因此,計算機成為步進電機的理想驅動源,隨著微電子和計算機技術的發展,軟硬體結合的控制方式成為了主流,即通過程序產生控制脈衝,驅動硬體電路。單片機通過軟體來控制步進電機,更好地挖掘出了電機的潛力。因此,用單片機控制步進電機已經成為了一種必然的趨勢,也符合數字化的時代趨。

工作原理


步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角。這一線性關係的存在,加上步進電機只有周期性的誤差而無累積誤差等特點。使得在速度、位置等控制領域用步進電機來控制變的非常的簡單。
雖然步進電機已被廣泛地應用,但步進電機並不能象普通的直流電機交流電機在常規下使用。它必須由雙環形脈衝信號、功率驅動電路等組成控制系統方可使用。因此用好步進電機卻非易事,它涉及到機械、電機、電子及計算機等許多專業知識。
目前,生產步進電機的廠家的確不少,但具有專業技術人員,能夠自行開發,研製的廠家卻非常少,大部分的廠家只一、二十人,連最基本的設備都沒有。僅僅處於一種盲目的仿製階段。這就給用戶在產品選型、使用中造成許多麻煩。步進電機是將電脈衝信號轉變為角位移或線位移的一種開環線性執行元件,具有無累積誤差、成本低、控制簡單特點。產品從相數上分有二、三、四、五相,從步距角上分有0.9°/1.8°、0.36°/0.72°,從規格上分有口42~φ130,從靜力矩上分有0.1N·M~40N·M。
以廣泛的感應子式步進電機為例。敘述其基本工作原理。望能對廣大用戶在選型、使用、及整機改進時有所幫助。
二、感應子式步進電機工作原理
(一)反應式步進電機原理
由於反應式步進電機工作原理比較簡單。下面先敘述三相反應式步進電機原理。
1、結構:
電機轉子均勻分佈著很多小齒,定子齒有三個勵磁繞阻,其幾何軸線依次分別與轉子齒軸線錯開。
0、1/3て、2/3て,(相鄰兩轉子齒軸線間的距離為齒距以て表示),即A與齒1相對齊,B與齒2向右錯開1/3て,C與齒3向右錯開2/3て,A'與齒5相對齊,(A'就是A,齒5就是齒1)下面是定轉子的展開圖:
2、旋轉:
如A相通電,B,C相不通電時,由於磁場作用,齒1與A對齊,(轉子不受任何力以下均同)。
如B相通電,A,C相不通電時,齒2應與B對齊,此時轉子向右移過1/3て,此時齒3與C偏移為1/3て,齒4與A偏移(て-1/3て)=2/3て。
如C相通電,A,B相不通電,齒3應與C對齊,此時轉子又向右移過1/3て,此時齒4與A偏移為1/3て對齊。
如A相通電,B,C相不通電,齒4與A對齊,轉子又向右移過1/3て
這樣經過A、B、C、A分別通電狀態,齒4(即齒1前一齒)移到A相,電機轉子向右轉過一個齒距,如果不斷地按A,B,C,A……通電,電機就每步(每脈衝)1/3て,向右旋轉。如按A,C,B,A……通電,電機就反轉。
由此可見:電機的位置和速度由導電次數(脈衝數)和頻率成一一對應關係。而方向由導電順序決定。
不過,出於對力矩、平穩、噪音及減少角度等方面考慮。往往採用A-AB-B-BC-C-CA-A這種導電狀態,這樣將原來每步1/3て改變為1/6て。甚至於通過二相電流不同的組合,使其1/3て變為1/12て,1/24て,這就是電機細分驅動的基本理論依據。
不難推出:電機定子上有m相勵磁繞阻,其軸線分別與轉子齒軸線偏移1/m,2/m……(m-1)/m,1。並且導電按一定的相序電機就能正反轉被控制——這是步進電機旋轉的物理條件。只要符合這一條件我們理論上可以製造任何相的步進電機,出於成本等多方面考慮,市場上一般以二、三、四、五相為多。
3、力矩:
電機一旦通電,在定轉子間將產生磁場(磁通量Ф)當轉子與定子錯開一定角度產生力
F與(dФ/dθ)成正比
S
其磁通量Ф=Br*S
Br為磁密,S為導磁面積
F與L*D*Br成正比
L為鐵芯有效長度,D為轉子直徑
Br=N·I/R
N·I為勵磁繞阻安匝數(電流乘匝數)R為磁阻。
力矩=力*半徑
力矩與電機有效體積*安匝數*磁密 成正比(只考慮線性狀態)
因此,電機有效體積越大,勵磁安匝數越大,定轉子間氣隙越小,電機力矩越大,反之亦然。
(二)感應子式步進電機
1、特點:
步進電機
步進電機
感應子式步進電機與傳統的反應式步進電機相比,結構上轉子加有永磁體,以提供軟磁材料的工作點,而定子激磁只需提供變化的磁場而不必提供磁材料工作點的耗能,因此該電機效率高,電流小,發熱低。因永磁體的存在,該電機具有較強的反電勢,其自身阻尼作用比較好,使其在運轉過程中比較平穩、噪音低、低頻振動小。
感應子式步進電機某種程度上可以看作是低速同步電機。一個四相電機可以作四相運行,也可以作二相運行。(必須採用雙極電壓驅動),而反應式電機則不能如此。例如:四相,八相運行(A-AB-B-BC-C-CD-D-DA-A)完全可以採用二相八拍運行方式。不難發現其條件為C= ,D= .
一個二相電機的內部繞組與四相電機完全一致,小功率電機一般直接接為二相,而功率大一點的電機,為了方便使用,靈活改變電機的動態特點,往往將其外部接線為八根引線(四相),這樣使用時,既可以作四相電機使用,可以作二相電機繞組串聯或並聯使用。
2、分類
感應子式步進電機以相數可分為:二相電機、三相電機、四相電機、五相電機等。以機座號(電機外徑)可分為:42BYG(BYG為感應子式步進電機代號)、57BYG、86BYG、110BYG、(國際標準),而像70BYG、90BYG、130BYG等均為國內標準。
3、步進電機的靜態指標術語
相數:產生不同對極N、S磁場的激磁線圈對數。常用m表示。
拍數:完成一個磁場周期性變化所需脈衝數或導電狀態用n表示,或指電機轉過一個齒距角所需脈衝數,以四相電機為例,有四相四拍運行方式即AB-BC-CD-DA-AB,四相八拍運行方式即 A-AB-B-BC-C-CD-D-DA-A.
步距角:對應一個脈衝信號,電機轉子轉過的角位移用θ表示。θ=360度(轉子齒數J*運行拍數),以常規二、四相,轉子齒為50齒電機為例。四拍運行時步距角為θ=360度/(50*4)=1.8度(俗稱整步),八拍運行時步距角為θ=360度/(50*8)=0.9度(俗稱半步)。
定位轉矩:電機在不通電狀態下,電機轉子自身的鎖定力矩(由磁場齒形的諧波以及機械誤差造成的)
靜轉矩:電機在額定靜態電作用下,電機不作旋轉運動時,電機轉軸的鎖定力矩。此力矩是衡量電機體積(幾何尺寸)的標準,與驅動電壓及驅動電源等無關。
雖然靜轉矩與電磁激磁安匝數成正比,與定齒轉子間的氣隙有關,但過份採用減小氣隙,增加激磁安匝來提高靜力矩是不可取的,這樣會造成電機的發熱及機械噪音。
4、步進電機動態指標及術語:
1、步距角精度:
步進電機每轉過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角*100%。不同運行拍數其值不同,四拍運行時應在5%之內,八拍運行時應在15%以內。
2、失步:
電機運轉時運轉的步數,不等於理論上的步數。稱之為失步。
3、失調角:
轉子齒軸線偏移定子齒軸線的角度,電機運轉必存在失調角,由失調角產生的誤差,採用細分驅動是不能解決的。
4、最大空載起動頻率:
電機在某種驅動形式、電壓及額定電流下,在不加負載的情況下,能夠直接起動的最大頻率。
5、最大空載的運行頻率:
電機在某種驅動形式,電壓及額定電流下,電機不帶負載的最高轉速頻率。
6、運行矩頻特性:
電機在某種測試條件下測得運行中輸出力矩與頻率關係的曲線稱為運行矩頻特性,這是電機諸多動態曲線中最重要的,也是電機選擇的根本依據。如下圖所示:
其它特性還有慣頻特性、起動頻率特性等。
電機一旦選定,電機的靜力矩確定,而動態力矩卻不然,電機的動態力矩取決於電機運行時的平均電流(而非靜態電流),平均電流越大,電機輸出力矩越大,即電機的頻率特性越硬。
如下圖所示:
其中,曲線3電流最大、或電壓最高;曲線1電流最小、或電壓最低,曲線與負載的交點為負載的最大速度點。
要使平均電流大,儘可能提高驅動電壓,使採用小電感大電流的電機。
7、電機的共振點:
步進電機均有固定的共振區域,二、四相感應子式步進電機的共振區一般在180-250pps之間(步距角1.8度)或在400pps左右(步距角為0.9度),電機驅動電壓越高,電機電流越大,負載越輕,電機體積越小,則共振區向上偏移,反之亦然,為使電機輸出電矩大,不失步和整個系統的噪音降低,一般工作點均應偏移共振區較多。
8、電機正反轉控制:
當電機繞組通電時序為AB-BC-CD-DA或( )時為正轉,通電時序為DA-CA-BC-AB或( )時為反轉。
三、驅動控制系統組成
使用、控制步進電機必須由環形脈衝,功率放大等組成的控制系統,其方框圖如下:
1、脈衝信號的產生。
脈衝信號一般由單片機或CPU產生,一般脈衝信號的占空比為0.3-0.4左右,電機轉速越高,占空比則越大。
2、信號分配
我廠生產的感應子式步進電機以二、四相電機為主,二相電機工作方式有二相四拍和二相八拍二種,具體分配如下:二相四拍為,步距角為1.8度;二相八拍為,步距角為0.9度。四相電機工作方式也有二種,四相四拍為AB-BC-CD-DA-AB,步距角為1.8度;四相八拍為AB-B-BC-C-CD-D-AB,(步距角為0.9度)。
3、功率放大
功率放大是驅動系統最為重要的部分。步進電機在一定轉速下的轉矩取決於它的動態平均電流而非靜態電流(而樣本上的電流均為靜態電流)。平均電流越大電機力矩越大,要達到平均電流大這就需要驅動系統盡量克服電機的反電勢。因而不同的場合採取不同的的驅動方式,到目前為止,驅動方式一般有以下幾種:恆壓、恆壓串電阻、高低壓驅動、恆流、細分數等。
為盡量提高電機的動態性能,將信號分配、功率放大組成步進電機的驅動電源。我廠生產的SH系列二相恆流斬波驅動電源與單片機及電機接線圖如下:
說明:
CP 接CPU脈衝信號(負信號,低電平有效)
OPTO 接CPU+5V
FREE 離線,與CPU地線相接,驅動電源不工作
DIR 方向控制,與CPU地線相接,電機反轉
VCC 直流電源正端
GND 直流電源負端
A 接電機引出線紅線
接電機引出線綠線
B 接電機引出線黃線
接電機引出線藍線
步進電機一經定型,其性能取決於電機的驅動電源。步進電機轉速越高,力距越大則要求電機的電流越大,驅動電源的電壓越高。電壓對力矩影響如下:
4、細分驅動器
在步進電機步距角不能滿足使用的條件下,可採用細分驅動器來驅動步進電機,細分驅動器的原理是通過改變相鄰(A,B)電流的大小,以改變合成磁場的夾角來控制步進電機運轉的。
四、步進電機的應用
步進電機的選擇
步進電機有步距角(涉及到相數)、靜轉矩、及電流三大要素組成。一旦三大要素確定,步進電機的型號便確定下來了。
1、步距角的選擇
電機的步距角取決於負載精度的要求,將負載的最小解析度(當量)換算到電機軸上,每個當量電機應走多少角度(包括減速)。電機的步距角應等於或小於此角度。目前市場上步進電機的步距角一般有0.36度/0.72度(五相電機)、0.9度/1.8度(二、四相電機)、1.5度/3度(三相電機)等。
2、靜力矩的選擇
步進電機
步進電機
步進電機的動態力矩一下子很難確定,我們往往先確定電機的靜力矩。靜力矩選擇的依據是電機工作的負載,而負載可分為慣性負載和摩擦負載二種。單一的慣性負載和單一的摩擦負載是不存在的。直接起動時(一般由低速)時二種負載均要考慮,加速起動時主要考慮慣性負載,恆速運行進只要考慮摩擦負載。一般情況下,靜力矩應為摩擦負載的2-3倍內好,靜力矩一旦選定,電機的機座及長度便能確定下來(幾何尺寸)
3、電流的選擇
靜力矩一樣的電機,由於電流參數不同,其運行特性差別很大,可依據矩頻特性曲線圖,判斷電機的電流(參考驅動電源、及驅動電壓)
綜上所述選擇電機一般應遵循以下步驟:
4、力矩與功率換算
步進電機一般在較大範圍內調速使用、其功率是變化的,一般只用力矩來衡量,力矩與功率換算如下:
P= Ω·M
Ω=2π·n/60
P=2πnM/60
其P為功率單位為瓦,Ω為每秒角速度,單位為弧度,n為每分鐘轉速,M為力矩單位為牛頓·米
P=2πfM/400(半步工作)
其中f為每秒脈衝數(簡稱PPS)
應用中的注意點
1、步進電機應用於低速場合---每分鐘轉速不超過1000轉,(0.9度時6666PPS),最好在1000-3000PPS(0.9度)間使用,可通過減速裝置使其在此間工作,此時電機工作效率高,噪音低。
2、步進電機最好不使用整步狀態,整步狀態時振動大。
3、由於歷史原因,只有標稱為12V電壓的電機使用12V外,其他電機的電壓值不是驅動電壓伏值,可根據驅動器選擇驅動電壓(建議:57BYG採用直流24V-36V,86BYG採用直流50V,110BYG採用高於直流80V),當然12伏的電壓除12V恆壓驅動外也可以採用其他驅動電源,不過要考慮溫升。
4、轉動慣量大的負載應選擇大機座號電機。
5、電機在較高速或大慣量負載時,一般不在工作速度起動,而採用逐漸升頻提速,一電機不失步,二可以減少噪音同時可以提高停止的定位精度。
6、高精度時,應通過機械減速、提高電機速度,或採用高細分數的驅動器來解決,也可以採用5相電機,不過其整個系統的價格較貴,生產廠家少,其被淘汰的說法是外行話。
7、電機不應在振動區內工作,如若必須可通過改變電壓、電流或加一些阻尼的解決。
8、電機在600PPS(0.9度)以下工作,應採用小電流、大電感、低電壓來驅動。
9、應遵循先選電機后選驅動的原則。
五、其他說明
有關低頻振動、升降速、機械共振、工作往複運動的誤差、平面圓弧X、Y插補誤差以及其他問題。具體解決辦法恕不便在此敘述,我廠用戶可來電諮詢,可根據具體情況解決。
不同廠家的電機在設計、使用材料及加工工藝方面差別很大,選用步進電機應注重可靠性而輕性能、重品質而輕價格。
最好採用同一生產廠家的控制器、驅動器和電機。這樣便於最終客戶的維護。
步進電機的基本原理
步進電機的基本原理:步進電機作為執行元件,是機電一體化的關鍵產品之一,廣泛應用在各種自動化控制系統中。隨著微電子和計算機技術的發展,步進電機的需求量與日俱增,在各個國民經濟領域都有應用。步進電機是一種將電脈衝轉化為角位移的執行機構。當步進驅動器接收到一個脈衝信號,它就驅動步進電機按設定的方向轉動一個固定的角度(稱為“步距角”),它的旋轉是以固定的角度一步一步運行的。可以通過控制脈衝個數來控制角位移量,從而達到準確定位的目的;同時可以通過控制脈衝頻率來控制電機轉動的速度和加速度,從而達到調速的目的。
步進電機
步進電機
步進電機可以作為一種控制用的特種電機,利用其沒有積累誤差(精度為100%)的特點,廣泛應用於各種開環控制。現在比較常用的步進電機包括反應式步進電機(VR)、永磁式步進電機(PM)、混合式步進電機(HB)和單相式步進電機等。永磁式步進電機一般為兩相,轉矩和體積較小,步進角一般為7.5度 或15度;反應式步進電機一般為三相,可實現大轉矩輸出,步進角一般為1.5度,但雜訊和振動都很大。反應式步進電機的轉子磁路由軟磁材料製成,定子上有多相勵磁繞組,利用磁導的變化產生轉矩。混合式步進電機是指混合了永磁式和反應式的優點。它又分為兩相和五相:兩相步進角一般為1.8度而五相步進角一般為 0.72度。這種步進電機的應用最為廣泛,也是本次細分驅動方案所選用的步進電機。
步進電機的一些基本參數:步進電機固有步距角:它表示控制系統每發一個步進脈衝信號,電機所轉動的角度。電機出廠時給出了一個步距角的值,如86BYG250A型電機給出的值為0.9°/1.8°(表示半步工作時為0.9°、整步工作時為1.步進電機°),這個步距角可以稱之為‘步進電機固有步距角’,它不一定是步進電機實際工作時的真正步距角,真正的步距角和驅動器有關。
步進電機的相數:是指電機內部的線圈組數,目前常用的有二相、三相、四相、五相步進電機。電機相數不同,其步距角也不同,一般二相電機的步距角為0.9°/1.8°、三相的為0.75°/1.5°、五相的為0.36°/0.72° 。在沒有細分驅動器時,用戶主要靠選擇不同相數的步進電機來滿足自己步距角的要求。如果使用細分驅動器,則‘步進電機’將變得沒有意義,用戶只需在驅動器上改變細分數,就可以改變步距角。
保持轉矩(HOLDING TORQUE):是指步進電機通電但沒有轉動時,定子鎖住轉子的力矩。它是步進電機最重要的參數之一,通常步進電機在低速時的力矩接近保持轉矩。由於步進電機的輸出力矩隨速度的增大而不斷衰減,輸出功率也隨速度的增大而變化,所以保持轉矩就成為了衡量步進電機最重要的參數之一。比如,當人們說2N.m的步進電機,在沒有特殊說明的情況下是指保持轉矩為2N.m的步進電機。
DETENT TORQUE:是指步進電機沒有通電的情況下,定子鎖住轉子的力矩。DETENT TORQUE 在國內沒有統一的翻譯方式,容易使大家產生誤解;由於反應式步進電機的轉子不是永磁材料,所以它沒有DETENT TORQUE。
步進電機的一些特點:
1.一般步進電機的精度為步進角的3-5%,且不累積。
2.步進電機外表允許的最高溫度。步進電機溫度過高首先會使電機的磁性材料退磁,從而導致力矩下降乃至於失步,因此電機外表允許的最高溫度應取決於不同電機磁性材料的退磁點;一般來講,磁性材料的退磁點都在攝氏130度以上,有的甚至高達攝氏200度以上,所以步進電機外表溫度在攝氏80-90度完全正常。
3.步進電機的力矩會隨轉速的升高而下降。當步進電機轉動時,電機各相繞組的電感將形成一個反向電動勢;頻率越高,反向電動勢越大。在它的作用下,電機隨頻率(或速度)的增大而相電流減小,從而導致力矩下降。
4.步進電機低速時可以正常運轉,但若高於一定速度就無法啟動,並伴有嘯叫聲。步進電機有一個技術參數:空載啟動頻率,即步進電機在空載情況下能夠正常啟動的脈衝頻率,如果脈衝頻率高於該值,電機不能正常啟動,可能發生丟步或堵轉。在有負載的情況下,啟動頻率應更低。如果要使電機達到高速轉動,脈衝頻率應該有加速過程,即啟動頻率較低,然後按一定加速度升到所希望的高頻(電機轉速從低速升到高速)。步進電動機以其顯著的特點,在數字化製造時代發揮著重大的用途。伴隨著不同的數字化技術的發展以及步進電機本身技術的提高,步進電機將會在更多的領域得到應用。
步進電機14問
1.什麼是步進電機?
步進電機是一種將電脈衝轉化為角位移的執行機構。通俗一點講:當步進驅動器接收到一個脈衝信號,它就驅動步進電機按設定的方向轉動一個固定的角度(及步進角)。您可以通過控制脈衝個數來控制角位移量,從而達到準確定位的目的;同時您可以通過控制脈衝頻率來控制電機轉動的速度和加速度,從而達到調速的目的。
2.步進電機分哪幾種?
步進電機分三種:永磁式(PM) ,反應式(VR)和混合式(HB)
永磁式步進一般為兩相,轉矩和體積較小,步進角一般為7.5度 或15度;
反應式步進一般為三相,可實現大轉矩輸出,步進角一般為1.5度,但雜訊和振動都很大。在歐美等發達國家80年代已被淘汰;混合式步進是指混合了永磁式和反應式的優點。它又分為兩相和五相:兩相步進角一般為1.8度而五相步進角一般為 0.72度。這種步進電機的應用最為廣泛。
3.什麼是保持轉矩(HOLDING TORQUE)?
保持轉矩(HOLDING TORQUE)是指步進電機通電但沒有轉動時,定子鎖住轉子的力矩。它是步進電機最重要的參數之一,通常步進電機在低速時的力矩接近保持轉矩。由於步進電機的輸出力矩隨速度的增大而不斷衰減,輸出功率也隨速度的增大而變化,所以保持轉矩就成為了衡量步進電機最重要的參數之一。比如,當人們說2N.m的步進電機,在沒有特殊說明的情況下是指保持轉矩為2N.m的步進電機。
4.什麼是DETENT TORQUE?
DETENT TORQUE 是指步進電機沒有通電的情況下,定子鎖住轉子的力矩。
DETENT TORQUE 在國內沒有統一的翻譯方式,容易使大家產生誤解;由於反應式步進電機的轉子不是永磁材料,所以它沒有DETENT TORQUE。
5.步進電機精度為多少?是否累積?
一般步進電機的精度為步進角的3-5%,且不累積。
6.步進電機的外表溫度允許達到多少?
步進電機溫度過高首先會使電機的磁性材料退磁,從而導致力矩下降乃至於失步,因此電機外表允許的最高溫度應取決於不同電機磁性材料的退磁點;一般來講,磁性材料的退磁點都在攝氏130度以上,有的甚至高達攝氏200度以上,所以步進電機外表溫度在攝氏80-90度完全正常。
7.為什麼步進電機的力矩會隨轉速的升高而下降?
當步進電機轉動時,電機各相繞組的電感將形成一個反向電動勢;頻率越高,反向電動勢越大。在它的作用下,電機隨頻率(或速度)的增大而相電流減小,從而導致力矩下降。
8.為什麼步進電機低速時可以正常運轉,但若高於一定速度就無法啟動,並伴有嘯叫聲?
步進電機有一個技術參數:空載啟動頻率,即步進電機在空載情況下能夠正常啟動的脈衝頻率,如果脈衝頻率高於該值,電機不能正常啟動,可能發生丟步或堵轉。在有負載的情況下,啟動頻率應更低。如果要使電機達到高速轉動,脈衝頻率應該有加速過程,即啟動頻率較低,然後按一定加速度升到所希望的高頻(電機轉速從低速升到高速)。
9.如何克服兩相混合式步進電機在低速運轉時的振動和雜訊?
步進電機低速轉動時振動和雜訊大是其固有的缺點,一般可採用以下方案來克服:
A.如步進電機正好工作在共振區,可通過改變減速比等機械傳動避開共振區;
B.採用帶有細分功能的驅動器,這是最常用的、最簡便的方法;
C.換成步距角更小的步進電機,如三相或五相步進電機;
D.換成交流伺服電機,幾乎可以完全克服震動和雜訊,但成本較高;
E.在電機軸上加磁性阻尼器,市場上已有這種產品,但機械結構改變較大。
10.細分驅動器的細分數是否能代表精度?
步進電機
步進電機
步進電機的細分技術實質上是一種電子阻尼技術(請參考有關文獻),其主要目的是減弱或消除步進電機的低頻振動,提高電機的運轉精度只是細分技術的一個附帶功能。比如對於步進角為1.8° 的兩相混合式步進電機,如果細分驅動器的細分數設置為4,那麼電機的運轉解析度為每個脈衝0.45°,電機的精度能否達到或接近0.45°,還取決於細分驅動器的細分電流控制精度等其它因素。不同廠家的細分驅動器精度可能差別很大;細分數越大精度越難控制。
11.四相混合式步進電機與驅動器的串聯接法和並聯接法有什麼區別?
四相混合式步進電機一般由兩相驅動器來驅動,因此,連接時可以採用串聯接法或並聯接法將四相電機接成兩相使用。串聯接法一般在電機轉速較的場合使用,此時需要的驅動器輸出電流為電機相電流的0.7倍,因而電機發熱小;並聯接法一般在電機轉速較高的場合使用(又稱高速接法),所需要的驅動器輸出電流為電機相電流的1.4倍,因而電機發熱較大。
12.如何確定步進電機驅動器的直流供電電源?
A.電壓的確定:混合式步進電機驅動器的供電電源電壓一般是一個較寬的範圍(比如IM483的供電電壓為12~48VDC),電源電壓通常根據電機的工作轉速和響應要求來選擇。如果電機工作轉速較高或響應要求較快,那麼電壓取值也高,但注意電源電壓的紋波不能超過驅動器的最大輸入電壓,否則可能損壞驅動器。
B.電流的確定:供電電源電流一般根據驅動器的輸出相電流I來確定。如果採用線性電源,電源電流一般可取I 的1.1~1.3倍;如果採用開關電源,電源電流一般可取I 的1.5~2.0倍。
13.混合式步進電機驅動器的離線信號FREE一般在什麼情況下使用?
當離線信號FREE為低電平時,驅動器輸出到電機的電流被切斷,電機轉子處於自由狀態(離線狀態)。在有些自動化設備中,如果在驅動器不斷電的情況下要求直接轉動電機軸(手動方式),就可以將FREE信號置低,使電機離線,進行手動操作或調節。手動完成後,再將FREE信號置高,以繼續自動控制。
14.如果用簡單的方法調整兩相步進電機通電后的轉動方向?
只需將電機與驅動器接線的A+和A-(或者B+和B-)對調即可。
1 細分驅動原理
步進電機控制中已蘊含了細分的機理。如三相步進電機按A→B→C……的順序輪流通電,步進電機為整步工作。而按A→AC→C→CB→B→BA→A……的順序通電,則步進電機為半步工作。以A→B為例,若將各相電流看作是向量,則從整步到半步的變換,就是在IA與IB之間插入過渡向量IAB,因為電流向量的合成方向決定了步進電機合成磁勢的方向,而合成磁勢的轉動角度本身就是步進電機的步進角度。顯然,I AB的插入改變了合成磁勢的轉動大小,使得步進電機的步進角度由θb變為0.5 θb,從而也就實現了2步細分。由此可見,步進電機的細分原理就是通過等角度有規律的插入電流合成向量,從而減小合成磁勢轉動角度,達到步進電機細分控制的目的。
如圖1所示,在三相步進電機的A相與B相之間插入合成向量AB,則實現了2步細分。要再實現4步細分,只需在A與AB之間插入3個向量I1、I2、I3,使得合成磁勢的轉動角度θ1=θ2=θ3=θ4,就實現了4步細分。但4步細分與2步細分是不同的,由於I1、I2、I3 3個向量的插入是對電流向量IB的分解,故控制脈衝已變成了階梯波。細分程度越高,階梯波越複雜。
在三相步進電機整步工作時,實現2步細分合成磁勢轉動過程為IA→IAB→IB;實現4步細分轉動過程為IA→I2→IAB……;而實現8步細分則轉動過程為IA→I1→I2→I3→IAB……。可見,選擇不同的細分步數,就要插入不同的電流合成向量。
2 多級細分驅動系統的實現
2.1 系統組成
如圖2所示,系統由主機、鍵盤輸入系統、步進顯示系統、步進控制系統組成。主機採用AT89C51單片機,其為低功耗的8位單片機,片內有一個4K位元組的Flash可編程、可擦除、只讀存儲器,故可簡化系統構成,且可滿足本系統數據存儲空間的要求。主機接收串列口送來的步進控制數據,並對其進行處理,以實施步進控制。鍵盤輸入系統是用來輸入控制所需的細分檔位。系統設計時,考慮到隨著細分的精確化,如128步細分時,步距角達到足夠小,能滿足各種步進要求,故以2的整數次冪作為細分基準。步進顯示系統由液晶顯示器顯示當前細分檔位和細分后的步進角等參數。為了減少電路的複雜性,該顯示器顯示的最小單位規定為0.01°。步進控制系統由D/A轉換部分和驅動系統組成。D/A轉換部分包括3片DAC0830集成晶元和數據鎖存系統。DAC0830轉換解析度是8位,該晶元具有與微處理器兼容、價格低廉、介面簡單、轉換控制容易等優點。D/A轉換部分的功能是將二進位代碼表示的階梯波數值轉換為相應的電流值輸出,經驅動系統放大,控制步進電機轉動。驅動系統採用三級管實現電流放大。
2.2 細分階梯波的產生
細分的實現過程,就是插入電流合成向量和轉換電流合成向量的過程。電流合成向量轉化的前提是合成向量的插入。在系統中,由主機根據設定的細分檔位,計算出相關參數,經查表生成相對應的階梯波,即插入了電流合成向量。在正轉或反轉的控制信號下,階梯波脈衝由輸出埠經鎖存系統送入D/A轉換器件DAC0830進行電流合成向量的轉化,輸出對應的電流值,經驅動放大控制步進電機,從而實現了細分驅動。
電流合成向量的插入是實現細分的關鍵,而要得到電流合成向量,首先必須產生階梯波。由圖1知,在三相電機半步工作的情況下,要實現4步細分,就必須將B相電流分成4份,但不是等分,需保證θ1=θ2=θ3=θ4。若θ1、θ2、θ3、θ4分別對應的電流向量是IB1、IB2、IB3、IB4,則在θ1所對應的三角形內,設步進角為θb,則α=180°-θb,β=θb-θ1,由正弦定理得
考慮到一般情況,由於細分時步進電機控制脈衝波形是階梯型,如對B相進行4步細分時,其電流輸入依次為IB1、IB1+ IB2、IB1+ IB2+ IB3、IB1+ IB2+ IB3+ IB4,相應合成磁勢轉過的角度為θ1、θ1+θ2、θ1+θ2+θ3、θ1+θ2+θ3+θ4,此時設
IBk即為電流合成向量中B相階梯波中第k階的電流值,θk即為此時合成磁勢相應轉過的角度。由此推出,對B相來講,在步進電機的步進角度為θb時,考慮到IA=IB,則階梯波型其任一階的電流值為
同理,可求得A相和C相在細分時對應的階梯波電流值。對(1)式求解,考慮D/A器件DAC0830的轉換精度是8位,轉換穩定時間是1 μs,故最大進行了128步細分的運算,相應求得其對應的細分電流值,並進行了相應的轉換,得到對應的二進位數值列表。此時,列表全部的數值就是在實現128步細分時,對應階梯波各階的電流值。
2.3 多級細分驅動的實現
要在細分的基礎上實現多級細分,就必須針對不同的細分檔位生成不同的階梯波。為此,該系統採用了循環增量查表法。首先建立階梯波數值存儲表格,有兩種方法,一種是針對每種細分方式建立相應的表格,其特點是細分種類多樣,但表格所佔空間較大;另外一種,也就是該系統採用的,以最大細分檔位對應的步數僅建立一個表格,大大減少了所需的存儲空間,並減少了程序運行中的不穩定因素。在具體控制中,該系統通過設定循環增量基數,使不同的細分檔位對應不同的細分步數,實現了多級細分驅動。
循環增量基數是指針對不同的細分檔位,實現等間隔定址時相應跳躍的步數。循環增量基數是在細分檔位設定后,由相應的計算公式得到。由於該系統最大細分步數為128步,即表格最大長度為128個位元組,若細分步數為m步,則循環增量基數為LB=(128/m)-1。不同的檔位對應不同的循環增量基數,同一表格就產生了多級細分所需的階梯波。
另外,在整步控制的基礎上,若細分為m步,對每m步運行中的各項電流值進行分析比較,可發現存在以下規律,即各相電流值的變化趨勢,隨著相位變化循環地出現,如表1所示。
表1 細分控制中各相電流值變化規律
各相 A→B B→C C→A
A相 高→遞減 電流值=0 增加→高
B相 增加→高 高→遞減電流值=0
C相 電流值=0 增加→高高→遞減
在表1中,每一種保持或變化都是持續m/2步,且可看出其良好的循環性。依據以上規律,在具體控制中,該系統單獨對由A→B控制時各相相應的電流值變化,實現子程序控制,而對整體控制則採用圓周移位的方式實現,即隨著合成磁勢在A→B、B→C、C→A的轉動,對同一輸出地址,相應每m步的控制數據循環出現。採用這種方式,簡化了實際控制程序,提高了控制效率。

分類


1、永磁式步進電機
永磁式步進電機一般為兩相,轉矩和體積較小,步進角一般為7.5度 或15度;
2、反應式步進電機反應式步進電機一般為三相,可實現大轉矩輸出,步進角一般為1.5度,但雜訊和振動都很大。反應式步進電機的轉子磁路由軟磁材料製成,定子上有多相勵磁繞組,利用磁導的變化產生轉矩。
3、混合式步進電機
混合式步進電機是指混合了永磁式和反應式的優點。它又分為兩相和五相:兩相步進角一般為1.8度而五相步進角一般為 0.72度。這種步進電機的應用最為廣泛。
步進電機型號M2-42-33、M2-42-38、M2-42-48、M2-57-41、M2-57-54、M2-57-78、M2-57-111、M2-86-77、M2-86-97、M2-86-115、M2-86-145、M3-86-97、M3-86-135、M3-86-145、M3-86-156、M3-110-161、M3-110-185、M3-110-220、M3-110-185、M3-130-174、M3-130-230、M3-130-258、M3-150-255

特點


1、一般步進電機的精度為步進角的3-5%,且不累積。
2、步進電機外表允許的最高溫度。步進電機溫度過高首先會使電機的磁性材料退磁,從而導致力矩下降乃至於失步,因此電機外表允許的最高溫度應取決於不同電機磁性材料的退磁點;一般來講,磁性材料的退磁點都在攝氏130度以上,有的甚至高達攝氏200度以上,所以步進電機外表溫度在攝氏80-90度完全正常。
徠3、步進電機的力矩會隨轉速的升高而下降。當步進電機轉動時,電機各相繞組的電感將形成一個反向電動勢;頻率越高,反向電動勢越大。在它的作用下,電機隨頻率(或速度)的增大而相電流減小,從而導致力矩下降。
4、步進電機低速時可以正常運轉,但若高於一定速度就無法啟動,並伴有嘯叫聲。步進電機有一個技術參數:空載啟動頻率,即步進電機在空載情況下能夠正常啟動的脈衝頻率,如果脈衝頻率高於該值,電機不能正常啟動,可能發生丟步或堵轉。在有負載的情況下,啟動頻率應更低。如果要使電機達到高速轉動,脈衝頻率應該有加速過程,即啟動頻率較低,然後按一定加速度升到所希望的高頻(電機轉速從低速升到高速)。步進電動機以其顯著的特點,在數字化製造時代發揮著重大的用途。伴隨著不同的數字化技術的發展以及步進電機本身技術的提高,步進電機將會在更多的領域得到應用。
5、高性能、無刷、免維護步進電機可提供非常精確的極其經濟的運動控制。這些2相步進電機本身按照較小的非常精確的1.8°增量(200/轉)運動。該步進動作容易控制,不需要複雜、昂貴的反饋設備。它們是氣動、液壓和伺服電機系統的優秀替代產品。.

指標及術語


1、步距角精度:步進電機每轉過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角*100%。不同運行拍數其值不同,四拍運行時應在5%之內,八拍運行時應在15%以內。
2、失步:電機運轉時運轉的步數,不等於理論上的步數。稱之為失步。
3、失調角:轉子齒軸線偏移定子齒軸線的角度,電機運轉必存在失調角,由失調角產生的誤差,採用細分驅動是不能解決的。
4、最大空載起動頻率:電機在某種驅動形式、電壓及額定電流下,在不加負載的情況下,能夠直接起動的最大頻率。
5、最大空載的運行頻率:電機在某種驅動形式,電壓及額定電流下,電機不帶負載的最高轉速頻率。
6、運行矩頻特性:電機在某種測試條件下測得運行中輸出力矩與頻率關係的曲線稱為運行矩頻特性,這是電機諸多動態曲線中最重要的,也是電機選擇的根本依據。如下圖所示:其它特性還有慣頻特性、起動頻率特性等。電機一旦選定,電機的靜力矩確定,而動態力矩卻不然,電機的動態力矩取決於電機運行時的平均電流(而非靜態電流),平均電流越大,電機輸出力矩越大,即電機的頻率特性越硬。
7、電機的共振點:步進電機均有固定的共振區域,二、四相感應子式的共振區一般在180-250pps之間(步距角1.8度)或在400pps左右(步距角為0.9度),電機驅動電壓越高,電機電流越大,負載越輕,電機體積越小,則共振區向上偏移,反之亦然,為使電機輸出電矩大,不失步和整個系統的噪音降低,一般工作點均應偏移共振區較多。
8、電機正反轉控制:當電機繞組通電時序為AB-BC-CD-DA或()時為正轉,通電時序為DA-CA-BC-AB或()時為反轉。步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角當步進驅動器接收到一個脈衝信號,它就驅動步進電機按設定的方向轉動一個固定的角度(及步進角)。
可以通過控制脈衝個數來控制角位移量,從而達到準確定位的目的;同時您可以通過控制脈衝頻率來控制電機轉動的速度和加速度,從而達到調速的目的。這一線性關係的存在,加上步進電機只有周期性的誤差而無累積誤差等特點。使得在速度、位置等控制領域用步進電機來控制變的非常的簡單。步進電動機的位移量與脈衝數嚴格成比例,這就不會引起誤差的積累,其轉速與脈衝頻率和步距角有關。雖然步進電機已被廣泛地應用,但步進電機並不能象普通的直流電機,交流電機在常規下使用。
對於步進電機不能簡單的說是直流還是交流,步進電機在運行時,步進電機的各繞組,要按一定的次序加以一定幅度,一定寬度的脈衝,這個脈衝電流流過繞組時,有單方向,也有雙方向的區別。它必須由雙環形脈衝信號、功率驅動電路等組成控制系統方可使用。而且步進電機本身不接電源的!步進電機是通過驅動器連接電源的!驅動器分高壓和低壓之分,也就是所謂的直流和交流。

基本參數


步進電機
步進電機
1、電機固有步距角
它表示控制系統每發一個步進脈衝信號,電機所轉動的角度。電機出廠時給出了一個步距角的值,如86BYG250A型電機給出的值為0.9°/1.8°(表示半步工作時為0.9°、整步工作時為1.8°),這個步距角可以稱之為‘電機固有步距角’,它不一定是電機實際工作時的真正步距角,真正的步距角和驅動器有關。
2、步進電機的相數
是指電機內部的線圈組數,目前常用的有二相、三相、四相、五相步進電機。電機相數不同,其步距角也不同,一般二相電機的步距角為0.9°/1.8°、三相的為0.75°/1.5°、五相的為0.36°/0.72° 。在沒有細分驅動器時,用戶主要靠選擇不同相數的步進電機來滿足自己步距角的要求。如果使用細分驅動器,則‘相數’將變得沒有意義,用戶只需在驅動器上改變細分數,就可以改變步距角。
3、保持轉矩(HOLDING TORQUE)
是指步進電機通電但沒有轉動時,定子鎖住轉子的力矩。它是步進電機最重要的參數之一,通常步進電機在低速時的力矩接近保持轉矩。由於步進電機的輸出力矩隨速度的增大而不斷衰減,輸出功率也隨速度的增大而變化,所以保持轉矩就成為了衡量步進電機最重要的參數之一。比如,當人們說2N.m的步進電機,在沒有特殊說明的情況下是指保持轉矩為2N.m的步進電機。DETENT TORQUE:是指步進電機沒有通電的情況下,定子鎖住轉子的力矩。DETENT TORQUE 在國內沒有統一的翻譯方式,容易使大家產生誤解;由於反應式步進電機的轉子不是永磁材料,所以它沒有DETENT TORQUE。
最大轉速 首先步進電機有優勢在於,編程簡單,接線少,故障也少,扭力大,現在的步進電機最高能達到60000脈衝數。轉速也有的能達到3000轉的,通常情況都能達到600轉。步進電機一般說是可以達到600轉,很多時候達不到這個轉速的,廠家說是600轉,在使用過程中很多時候可以達到500轉。一般情況下,機器能轉到500轉,已經很快的了。再快了可能就會堵轉,電機就象卡死了一樣的響,這就是速度過高,電機轉不過來。發生這種現象,解決的辦法是:1、降低最高運行頻率;2、調高加減速時間;3、降低啟動頻率;4、把細分數調高一個檔位。步進電機的轉速和力矩成反比,轉速越快,力矩越小。這點選型的時候很重要,不要小馬拉大車。選型大一點沒關係,小了或是剛剛好就真是不行,丟步大多數是因為電機小了,機械過重,造成小馬拉大車的現象。很多人都說步進電機丟步,其實機械原因也有很多,像絲桿軸承沒有裝好,絲桿磨損,導軌磨損都能讓機械走不準,還有原點開關的好壞,直接影響精度。
驅動電路
步進電機區別於其他控制電機的最大特點是,它是通過輸入脈衝信號來進行控制的,即電機的總轉動角度由輸入脈衝數決定,而電機的轉速由脈衝信號頻率決定。
步進電機的驅動電路根據控制信號工作,控制信號由單片機產生。其基本原理作用如下:
(1)控制換相順序
通電換相這一過程稱為脈衝分配。例如:三相步進電機的三拍工作方式,其各相通電順序為A-B-C-D,通電控制脈衝必須嚴格按照這一順序分別控制A,B,C,D相的通斷。
(2)控制步進電機的轉向
如果給定工作方式正序換相通電,步進電機正轉,如果按反序通電換相,則電機就反轉。
(3)控制步進電機的速度
如果給步進電機發一個控制脈衝,它就轉一步,再發一個脈衝,它會再轉一步。兩個脈衝的間隔越短,步進電機就轉得越快。調整單片機發出的脈衝頻率,就可以對步進電機進行調速。
如何做一名工程師預測步進電機牽出轉矩
在最近的文章中,我寫了一篇關於步進電機系統的性能強調的是,所有的工程師需要了解這種被廣泛使用的電磁機械數字激勵器的關鍵概念。作為延續這篇文章中的討論,我談步進電機牽出轉矩曲線,因為這是由電機製造商提供的最重要的信息。的最大可用電動機轉矩與速度(每秒的脈衝),該曲線是所獲得的實驗曲線使用特定的操作模式,例如,兩相上,全步進模式中,與特定驅動程序的方法,例如,電壓控制或電流控制。
拉入扭矩曲線顯示最大摩擦轉矩與該馬達可以啟動,在不同的步進率,而不會失去任何步驟。在實際應用中,該曲線已被轉移到占負載慣量。拉出轉矩曲線顯示了可用的扭矩時,電機運行在一個恆定的速度在給定頻率。在一個應用程序,這個扭矩可用於克服負載摩擦轉矩和用於加速負載和電機慣量。所選驅動器對輸出扭矩和功率巨大的影響力。
工程師將使用電機的模式(例如,半步或四分之一步)和驅動程序的方法由應用程序決定的。可以一個工程師預測為條件下的步進電機特定於應用程序的牽出轉矩曲線?答案是肯定的,而且,正如你所期望的,它是通過建模完成。
旋轉(Θ)機械子系統包括一個轉子慣量J ,摩擦轉矩TF(庫侖和粘滯)和負載轉矩TL與連接到通過上述磁場產生和磁轉矩,TM,正比於所代表的電氣子系統相電流,I,用一個比例常數克拉。轉子齒的數量是天然橡膠。電氣子系統包括一個直流電壓源電子供應,相電流,i ,相電阻R,和相自感,L,與耦合到通過上述磁場產生並通過一個速度相關的電壓Eb為代表的機械子系統的用的比例常數kb的。另外,由於電機轉子具有永磁體,有一止動轉矩,TD,在磁轉矩的4倍的頻率發生,甚至在不存在任何相電流。這裡必須要添加的驅動程序模型是電壓控制和電流控制。
通過施加斜坡載入轉矩, TL ,在指定的速度(每秒的脈衝) ,在運行模擬,並觀察負載轉矩的值中得到的牽出轉矩在該電機損耗的同步路徑,即錯過步驟。重複這一步驟,要的速度範圍。通過施加規定的負載轉矩和運行模擬的序列的速度增加,以確定最大速度可以為電機運行在該負載轉矩得到的牽入轉矩曲線。
而更準確的混合動力汽車車型存在,這裡所描述的模型是最充足的步進電機系統設計。參數識別是關鍵和製造商的電機數據往往是稀疏的大公差。所有在這個模型中的參數可以從什麼是在電機數據表通常給出確定。如果精確的模型預測是必不可少的,沒有什麼可以替代的測量,以驗證數據表。

功能模塊設計


步進電機
步進電機
本模塊可分為如下3個部分:
單片機系統:控制步進電動機;
外圍電路:PIC單片機和步進電動機的介面電路;
PIC程序:編寫單片機控制步進電功機的介面程序,實現三角波信號的輸出功能。
(1)步進電動機與單片機的介面。
單片機是性能極佳的控制處理器,在控制步進電機工作時,介面部件必須要有下列功能。
①電壓隔離功能。
單片機工作在5V,而步進電機是工作在幾十V,甚至更高。一旦步進電機的電壓串到單片機中,就會損壞單片機;步進電機的信號會幹擾單片機,也可能導致系統工作失誤,因此介面器件必須有隔離功能。
②信息傳遞功能。
介面部件應能夠把單片機的控制信息傳遞給步進電機迴路,產生工作所需的控制信息,對應於不同的工作方式,介面部件應能產生相應的工作控制波形。
③產生所需的不同頻率。
為了使步進電機以不同的速度工作,以適應不同的目的,介面部件應能產生不同的工作頻率。
(2)電壓隔離介面。
電壓隔離介面專用於隔離低壓部分的單片機和高壓部分的步進電機驅動電路,以保證它們的正常工作。
電壓隔離介面可以用脈衝變壓器或光電隔離器,基本上是採用光電隔離器。單片機輸出信號可以通過TTL門電路或者直接送到晶體管的基極,再由晶體管驅動光電耦合器件的發光二極體。
發光二極體的光照到光電耦合器件內部的光敏管上,轉換成電信號,再去驅動步進電機的功率放大電路,電流放大介面是步進電機功放電路的前置放大電路。它的作用是把光電隔離器的輸出信號進行電流放大,以便向功放電路提供足夠大的驅動電流。
(3)工作方式介面和頻率發生器。
用單片機控制步進電動機,需要在輸入輸出介面上用3條I/0線對步進電動機進行控制,這時,單片機用I/O口的RA0、RAI、RA2控制步進電動機的三相。

優勢及缺陷


優點

步進電機
步進電機
1、電機旋轉的角度正比於脈衝數;
2、電機停轉的時候具有最大的轉矩(當繞組激磁時)
3、由於每步的精度在百分之三到百分之五,而且不會將一步的誤差積累到下一步因而有較好的位置精度和運動的重複性;
4、優秀的起停和反轉響應;
5、由於沒有電刷,可靠性較高,因此電機的壽命僅僅取決於軸承的壽命;
6、電機的響應僅由數字輸入脈衝確定,因而可以採用開環控制,這使得電機的結構可以比較簡單而且控制成本;
7、僅僅將負載直接連接到電機的轉軸上也可以極低速的同步旋轉;
8、由於速度正比於脈衝頻率,因而有比較寬的轉速範圍。

缺陷

1、如果控制不當容易產生共振;
2、難以運轉到較高的轉速;
3、難以獲得較大的轉矩;
4、在體積重量方面沒有優勢,能源利用率低
5、超過負載時會破壞同步,高速工作時會發出振動和雜訊。

驅動方法


步進電機不能直接接到工頻交流或直流電源上工作,而必須使用專用的步進電動機驅動器,它由脈衝發生控制單元、功率驅動單元、保護單元等組成。驅動單元與步進電動機直接耦合,也可理解成步進電動機微機控制器的功率介面。

驅動要求


1、能夠提供較快的電流上升和下降速度,
使電流波形盡量接近矩形。
具有供截止期間釋放電流流通的迴路,以降低繞組兩端的反電動勢,加快電流衰減。
2、具有較高韻功率及效率。
步進電機驅動器,它是把控制系統發出的脈衝信號轉化為步進電機的角位移,或者說:控制系統每發一個脈衝信號,通過驅動器就使步進電機旋轉一個步距角。也就是說步進電機的轉速與脈衝信號的頻率成正比。所以控制步進脈衝信號的頻率,就可以對電機精確調速;控制步進脈衝的個數,就可以對電機精確定位。步進電機驅動器有很多,應以實際的功率要求合理的選擇驅動器。

主要應用


步進電機
步進電機
步進電機的選擇
步進電機有步距角(涉及到相數)、靜轉矩、及電流三大要素組成。
一旦三大要素確定,步進電機的型號便確定下來了。
1、步距角的選擇
電機的步距角取決於負載精度的要求,將負載的最小解析度(當量)換算到電機軸上,每個當量電機應走多少角度(包括減速)。電機的步距角應等於或小於此角度。市場上步進電機的步距角一般有0.36度/0.72度(五相電機)、0.9度/1.8度(二、四相電機)、1.5度/3度(三相電機)等。
2、靜力矩的選擇
步進電機的動態力矩一下子很難確定,我們往往先確定電機的靜力矩。靜力矩選擇的依據是電機工作的負載,而負載可分為慣性負載和摩擦負載二種。單一的慣性負載和單一的摩擦負載是不存在的。直接起動時(一般由低速)時二種負載均要考慮,加速起動時主要考慮慣性負載,恆速運行進只要考慮摩擦負載。一般情況下,靜力矩應為摩擦負載的2-3倍內好,靜力矩一旦選定,電機的機座及長度便能確定下來(幾何尺寸)。
3、電流的選擇
靜力矩一樣的電機,由於電流參數不同,其運行特性差別很大,可依據矩頻特性曲線圖,判斷電機的電流。
應用中的注意點
1、步進電機應用於低速場合---每分鐘轉速不超過1000轉,(0.9度時6666PPS),最好在1000-3000PPS(0.9度)間使用,可通過減速裝置使其在此間工作,此時電機工作效率高,噪音低;
2、步進電機最好不使用整步狀態,整步狀態時振動大;
3、由於歷史原因,只有標稱為12V電壓的電機使用12V外,其他電機的電壓值不是驅動電壓伏值,可根據驅動器選擇驅動電壓(建議:57BYG採用直流24V-36V,86BYG採用直流50V,110BYG採用高於直流80V),當然12伏的電壓除12V恆壓驅動外也可以採用其他驅動電源,不過要考慮溫升;
4、轉動慣量大的負載應選擇大機座號電機;
5、電機在較高速或大慣量負載時,一般不在工作速度起動,而採用逐漸升頻提速,一電機不失步,二可以減少噪音同時可以提高停止的定位精度;
6、高精度時,應通過機械減速、提高電機速度,或採用高細分數的驅動器來解決,也可以採用5相電機,不過其整個系統的價格較貴,生產廠家少,其被淘汰的說法是外行話;
7、電機不應在振動區內工作,如若必須可通過改變電壓、電流或加一些阻尼的解決;
8、電機在600PPS(0.9度)以下工作,應採用小電流、大電感、低電壓來驅動;
9、應遵循先選電機后選驅動的原則。

發展歷程


步進電機又稱脈衝電機或階躍電機,或步進驅動器。步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元步進電機件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,當步進驅動器接收到一個脈衝信號,它就驅動步進電機按設定的方向轉動一個固定的角度,稱為“步距角”,它的旋轉是以固定的角度一步一步運行的。可以通過控制脈衝個數來控制角位移量,從而達到準確定位的目的;同時可以通過控制脈衝頻率來控制電機轉動的速度和加速度,從而達到調速的目的。
日前,隨著電子技術,控制技術以及電機本體的發展和變化,傳統電機分類間的界面越來越模糊。筆者認為這是機電一體化元件組的必然趨勢。就傳統的步進電機來說,步進電機可以簡單地定義為,根據輸入的脈衝信號,每改變一次勵磁狀態就前進一定角度(或長度),若不改變勵磁狀態則保持一定位置而靜止的電機。從廣義上講,步進電機是一種脈衝信號控制的無刷式直流電機,也可看作是在一定頻率範圍內轉速與控制脈衝頻率同步的同步電機。
步進電機的機理是基於最基本的電磁鐵作用,其原如模型起源於1830年至1860年間。1870年前後開始以控制為目的的嘗試,應用於氬弧燈的電極輸送機構中。這被認為是最初的步進電機。此後,在電話自動交換中廣泛使用了步進電機。不久又在缺乏交流電源的船舶和飛機等獨立系統中廣泛使用。
20世紀60年代後期,在步進電機本體方面隨著永磁材料的發展,各種實用性步進電機應運而生,而半導體技術的發展則推進了步進電機在眾多領域的應用。在近30年間,步進電機迅速地發燕並成熟起來。從發展趨向來講,步進電機已經能與直流電機、非同步電機、以及同步電機並列,從而成為電機的一種基本類型。
在我國,步進電機的研究及製造起始於本世紀50年代後期。從50年代後期到60年代後期,主要是高等院校和科研機構為研究一些裝置而使用或開發少量產品。這些產品以多段結構三相反應式步進電機為主。70年代初期,步進電機的生產和研究有所突破。除反映在驅動器設計方面的長足進步外,對反應式步進電機本體的設計研究發展到一個較高水平。70年代中期至80年年代中期為成品發展階段,新品種高性能電機不斷被開發。自80年代中期以來,由於對步進電機精確模型做了大量研究工作,各種混合式步進驅動器作為產品廣泛利用。

主要構造


三相磁阻式步進電動機模型的結構示意圖如概述圖所示。它的定、轉子鐵心都由硅鋼片疊成。定子上有六個磁極,每兩個相對的磁極繞有同一相繞組,三相繞組接成星形作為控制繞組;轉子鐵心上沒有繞組,只有四個齒,齒寬等於定子極靴寬。
步進電機加減速過程式控制制技術
正因為步進電機的廣泛應用,對步進電機的控制的研究也越來越多,在啟動或加速時如果步進脈衝變化太快,轉子由於慣性而跟隨不上電信號的變化,產生堵轉或失步在停止或減速時由於同樣原因則可能產生超步。為防止堵轉、失步和超步,提高工作頻率,要對步進電機進行升降速控制。
步進電機的轉速取決於脈衝頻率、轉子齒數和拍數。其角速度與脈衝頻率成正比,而且在時間上與脈衝同步。因而在轉子齒數和運行拍數一定的情況下,只要控制脈衝頻率即可獲得所需速度。由於步進電機是藉助它的同步力矩而啟動的,為了不發生失步,啟動頻率是不高的。特別是隨著功率的增加,轉子直徑增大,慣量增大,啟動頻率和最高運行頻率可能相差十倍之多。
步進電機的起動頻率特性使步進電機啟動時不能直接達到運行頻率,而要有一個啟動過程,即從一個低的轉速逐漸升速到運行轉速。停止時運行頻率不能立即降為零,而要有一個高速逐漸降速到零的過程。
步進電機的輸出力矩隨著脈衝頻率的上升而下降,啟動頻率越高,啟動力矩就越小,帶動負載的能力越差,啟動時會造成失步,而在停止時又會發生過沖。要使步進電機快速的達到所要求的速度又不失步或過沖,其關鍵在於使加速過程中,加速度所要求的力矩既能充分利用各個運行頻率下步進電機所提供的力矩,又不能超過這個力矩。因此,步進電機的運行一般要經過加速、勻速、減速三個階段,要求加減速過程時間盡量的短,恆速時間盡量長。特別是在要求快速響應的工作中,從起點到終點運行的時間要求最短,這就必須要求加速、減速的過程最短,而恆速時的速度最高。
國內外的科技工作者對步進電機的速度控制技術進行了大量的研究,建立了多種加減速控制數學模型,如指數模型、線性模型等,並在此基礎上設計開發了多種控制電路,改善了步進電機的運動特性,推廣了步進電機的應用範圍指數加減速考慮了步進電機固有的矩頻特性,既能保證步進電機在運動中不失步,又充分發揮了電機的固有特性,縮短了升降速時間,但因電機負載的變化,很難實現而線性加減速僅考慮電機在負載能力範圍的角速度與脈衝成正比這一關係,不因電源電壓、負載環境的波動而變化的特性,這種升速方法的加速度是恆定的,其缺點是未充分考慮步進電機輸出力矩隨速度變化的特性,步進電機在高速時會發生失步。
步進電機的細分驅動控制
步進電機由於受到自身製造工藝的限制,如步距角的大小由轉子齒數和運行拍數決定,但轉子齒數和運行拍數是有限的,因此步進電機的步距角一般較大並且是固定的,步進的解析度低、缺乏靈活性、在低頻運行時振動,噪音比其他微電機都高,使物理裝置容易疲勞或損壞。這些缺點使步進電機只能應用在一些要求較低的場合,對要求較高的場合,只能採取閉環控制,增加了系統的複雜性,這些缺點嚴重限制了步進電機作為優良的開環控制組件的有效利用。細分驅動技術在一定程度上有效地克服了這些缺點。
步進電機細分驅動技術是年代中期發展起來的一種可以顯著改善步進電機綜合使用性能的驅動技術。年美國學者、首次在美國增量運動控制系統及器件年會上提出步進電機步距角細分的控制方法。在其後的二十多年裡,步進電機細分驅動得到了很大的發展。逐步發展到上世紀九十年代完全成熟的。我國對細分驅動技術的研究,起步時間與國外相差無幾。
在九十年代中期的到了較大的發展。主要應用在工業、航天、機器人、精密測量等領域,如跟蹤衛星用光電經緯儀、軍用儀器、通訊和雷達等設備,細分驅動技術的廣泛應用,使得電機的相數不受步距角的限制,為產品設計帶來了方便。目前在步進電機的細分驅動技術上,採用斬波恆流驅動,儀脈衝寬度調製驅動、電流矢量恆幅均勻旋轉驅動控制止,大大提高步進電機運行運轉精度,使步進電機在中、小功率應用領域向高速且精密化的方向發展。

控制策略


PID控制
PID 控制作為一種簡單而實用的控制方法,在步進電機驅動中獲得了廣泛的應用。它根據給定值r(t)與實際輸出值c(t)構成控制偏差e(t),將偏差的比例、積分和微分通過線性組合構成控制量,對被控對象進行控制。文獻將集成位置感測器用於二相混合式步進電機中,以位置檢測器和矢量控制為基礎,設計出了一個可自動調節的PI速度控制器,此控制器在變工況的條件下能提供令人滿意的瞬態特性。文獻根據步進電機的數學模型,設計了步進電機的PID控制系統,採用PID控制演演算法得到控制量,從而控制電機向指定位置運動。最後,通過模擬驗證了該控制具有較好的動態響應特性。採用PID控制器具有結構簡單、魯棒性強、可靠性高等優點,但是它無法有效應對系統中的不確定信息。
目前,PID控制更多的是與其他控制策略相結合,形成帶有智能的新型複合控制。這種智能複合型控制具有自學習、自適應、自組織的能力,能夠自動辨識被控過程參數,自動整定控制參數,適應被控過程參數的變化,同時又具有常規PID控制器的特點。
自適應控制
自適應控制是在20世紀50年代發展起來的自動控制領域的一個分支。它是隨著控制對象的複雜化,當動態特性不可知或發生不可預測的變化時,為得到高性能的控制器而產生的。其主要優點是容易實現和自適應速度快,能有效地克服電機模型參數的緩慢變化所引起的影響,是輸出信號跟蹤參考信號。文獻研究者根據步進電機的線性或近似線性模型推導出了全局穩定的自適應控制演演算法,這些控制演演算法都嚴重依賴於電機模型參數。文獻將閉環反饋控制與自適應控制結合來檢測轉子的位置和速度,通過反饋和自適應處理,按照優化的升降運行曲線,自動地發出驅動的脈衝串,提高了電機的拖動力矩特性,同時使電機獲得更精確的位置控制和較高較平穩的轉速。
目前,很多學者將自適應控制與其他控制方法相結合,以解決單純自適應控制的不足。文獻設計的魯棒自適應低速伺服控制器,確保了轉動脈矩的最大化補償及伺服系統低速高精度的跟蹤控制性能。文獻實現的自適應模糊PID控制器可以根據輸入誤差和誤差變化率的變化,通過模糊推理在線調整PID參數,實現對步進電機的自適應控制,,從而有效地提高系統的響應時間、計算精度和抗干擾性。
矢量控制
矢量控制是現代電機高性能控制的理論基礎,可以改善電機的轉矩控制性能。它通過磁場定向將定子電流分為勵磁分量和轉矩分量分別加以控制,從而獲得良好的解耦特性,因此,矢量控制既需要控制定子電流的幅值,又需要控制電流的相位。由於步進電機不僅存在主電磁轉矩,還有由於雙凸結構產生的磁阻轉矩,且內部磁場結構複雜,非線性較一般電機嚴重得多,所以它的矢量控制也較為複雜。推導出了二相混合式步進電機 d-q軸數學模型,以轉子永磁磁鏈為定向坐標系,令直軸電流id=0,電動機電磁轉矩與iq成正比,用PC機實現了矢量控制系統。系統中使用感測器檢測電機的繞組電流和轉自位置,用PWM方式控制電機繞組電流。文推導出基於磁網路的二相混合式步進電機模型,給出了其矢量控制位置伺服系統的結構,採用神經網路模型參考自適應控制策略對系統中的不確定因素進行實時補償,通過最大轉矩/電流矢量控制實現電機的高效控制。
智能控制的應用
智能控制不依賴或不完全依賴控制對象的數學模型,只按實際效果進行控制,在控制中有能力考慮系統的不確定性和精確性,突破了傳統控制必須基於數學模型的框架。目前,智能控制在步進電機系統中應用較為成熟的是模糊邏輯控制、神經網路和智能控制的集成。
模糊控制就是在被控制對象的模糊模型的基礎上,運用模糊控制器的近似推理等手段,實現系統控制的方法。作為一種直接模擬人類思維結果的控制方式,模糊控制已廣泛應用於工業控制領域。與常規控制相比,模糊控制無須精確的數學模型,具有較強的魯棒性、自適應性,因此適用於非線性、時變、時滯系統的控制。給出了模糊控制在二相混合式步進電機速度控制中應用實例。系統為超前角控制,設計無需數學模型,速度響應時間短。
神經網路控制
神經網路是利用大量的神經元按一定的拓撲結構和學習調整的方法。它可以充分逼近任意複雜的非線性系統,能夠學習和自適應未知或不確定的系統,具有很強的魯棒性和容錯性,因而在步進電機系統中得到了廣泛的應用。將神經網路用於實現步進電機最佳細分電流,在學習中使用Bayes 正則化演演算法,使用權值調整技術避免多層前向神經網路陷入局部極小點,有效解決了等步距角細分問題。