基因表達
基因表達
基因表達(gene expression)是指細胞在生命過程中,把儲存在DNA順序中遺傳信息經過轉錄和翻譯,轉變成具有生物活性的蛋白質分子。生物體內的各種功能蛋白質和酶都是同相應的結構基因編碼的。差別基因表達(differentialgeneexpression)指細胞分化過程中,奢侈基因按一定順序表達,表達的基因數約佔基因總數的5%~10%。也就是說,某些特定奢侈基因表達的結果生成一種類型的分化細胞,另一組奢侈基因表達的結果導致出現另一類型的分化細胞,這就是基因的差別表達。其本質是開放某些基因,關閉某些基因,導致細胞的分化。
基因表達
在RNA聚合酶的催化下,以DNA為模板合成mRNA的過程稱為轉錄(transcription)。在雙鏈DNA中,作為轉錄模板的鏈稱為模板鏈(template strand),或反義鏈(antisensestrand);而不作為轉錄模板的鏈稱為編碼鏈(coding strand),或有義鏈(sense strand),在雙鏈DNA中與轉錄模板互補的一條DNA鏈即編碼鏈,它與轉錄產物的差異僅在於DNA中T變為RNA中的U,在含許多基因的DNA雙鏈中,每個基因的模板鏈並不總是在同一條鏈上,亦即一條鏈可作為某些基因的模板鏈的,也可是另外一些基因的編碼鏈。轉錄后加工
(1)剪接:一個基因的外顯子和內含子都轉錄在一條原始轉錄物RNA分子中,稱為前mRNA(pre-mRNA),又稱核內異質RNA(heterogenuous nuclear RNA,huRNA)。因此前mRNA分子既有外顯子順序又有內含子順序,另外還包括編碼區前面及後面非翻譯順序。這些內含子順序必須除支而把外顯子順序連接起來,才能產生成熟的有功能的mRNA分子,這個過程稱為RNA剪接(RNa splicing)。剪切發生在外顯子的3’末端的GT和內含子3’末端與下一個外顯子交界的AG處。
基因表達
(2)加帽:幾乎全部的真核mRNa 端都具“帽子”結構。雖然真核生物的mRNA的轉錄以嘌呤核苷酸三磷酸(pppAG或pppG)領頭,但在5’端的一個核苷酸總是7-甲基鳥核苷三磷酸(m7GpppAGpNp)。mNRA5’端的這種結構稱為帽子(cap)。不同真核生物的mRNA具有不同的帽子。mRNA的帽結構功能:①能被核糖體小亞基識別,促使mRNA和核糖體的結合;②m7Gppp結構能有效地封閉RNa 5’末端,以保護mRNA免疫5’核酸外切酶的降解,增強mRNA的穩定
(3)加尾:大多數真核生物的mRNA 3’末端都有由100~200個A組成的Poly(A)尾巴。Poly(A)尾不是由DNA編碼的,而是轉錄后的前mRNA以ATP為前體,由RNA末端腺苷酸轉移酶,即Ploy(A)聚合酶催化聚合到3’末端。加尾並非加在轉錄終止的3’末端,而是在轉錄產物的3’末端,由一個特異性酶識別切點上遊方向13~20鹼基的加尾識別信號AAUAAA以及切點下游的保守順序GUGUGUG,把切點下游的一段切除,然後再由Poly(A)聚合酶催化,加上Poly(A)尾巴,如果這一識別信號發生突變,則切除作用和多聚腺苷酸化作用均顯著降低。mRNAPoly(A)尾的功能是:①可能有助mRNA從核到細胞質轉運;②避免在細胞中受到核酶降解,增強mRNA的穩定性。
基因表達
(1)肽鏈的起始:在許多起始因子的作用下,首先是核糖體的小亞基和mRNA上的起始密碼子結合,然後甲醯甲硫氨醯tRNA(tRNA fMet)結合上去,構成起始複合物。通過tRNA的反密碼子UAC,識別mRNA上的起始密碼子AUG,並相互配對,隨後核糖體大亞基結合到小亞基上去,形成穩定的複合體,從而完成了起始的作用。
(2)肽鏈的延和長:核糖體上有兩個結合點——P位和A位,可以同時結合兩個氨醯tRNA。當核糖體沿著mRNA從5’→3’移動時,便依次讀出密碼子。首先是tRNAfMet結合在P位,隨後第二個氨醯tRNA進入A位。此時,在肽基轉移酶的催化下,P位和A位上的2個氨基酸之間形成肽鍵。第一個tRNA失去了所攜帶的氨基酸而從P位脫落,P位空載。A位上的氨醯tRNA在移位酶和GTP的作用下,移到P位,A位則空載。核糖體沿mRNA 5’端向3’端移動一個密碼子的距離。第三個氨醯tRNA進入A位,與P位上氨基酸再形成肽鍵,並接受P位上的肽鏈,P位上tRNA釋放,A位上肽鏈又移到P位,如此反覆進行,肽鏈不斷延長,直到mRNA的終止密碼出現時,沒有一個氨醯tRNA可與它結合,於是肽鏈延長終止。
(3)肽鏈的終止:終止信號是mRNA上的終止密碼子(UAA、UAG或UGA)。當核糖體沿著mRNA移動時,多肽鏈不斷延長,到A位上出現終止信號后,就不再有任何氨醯tRNA接上去,多肽鏈的合成就進入終止階段。在釋放因子的作用下,肽醯tRNA的的酯鍵分開,於是完整的多肽鏈和核糖體的大亞基便釋放出來,然後小亞基也脫離mRNA。
(4)翻譯后加工(postranslational processing):從核糖體上釋放出來的多肽需要進一步加工修飾才能形成具有生物活性的蛋白質。翻譯后的肽鏈加工包括肽鏈切斷,某些氨基酸的羥基化、磷酸化、乙醯化、糖基化等。真核生物在新生手肽鏈翻譯后將甲硫氨酸裂解掉。有一類基因的翻譯產物前體含有多種氨基酸順序,可以切斷為不同的蛋白質或肽,稱為多蛋白質(polyprotein)。例如胰島素(insulin)是先合成86個氨基酸的初級翻譯產物,稱為胰島素原(proinsulin),胰島素原包括A、B、C三段,經過加工,切去其中無活性的C肽段,並在A肽和B肽之間形成二硫鍵,這樣才得到由51個氨基酸組成的有活性的胰島素。
基因表達
現在已發現一個基因的外顯子可以是另一基因的內含子,所這亦然。以小鼠的澱粉酶基因為例,來源於肝的與來源於唾液腺的是同一基因。澱粉酶基因包括4個外顯子,肝生成的澱粉酶不保留外顯子1,而唾液腺中的澱粉酶則保留了外顯子1的50bp順序,但把外顯子2與前後兩段內含子一起剪切掉,經過這樣剪接,外顯子2就變成唾液澱粉酶基因中的內含子。
同一基因在不同組織能生成不同的基因產物來源於不同組織的類似蛋白,可以由同一基因編碼產生,這種現象首先是由於基因中的增強子等有組織特異性,它能與不同組織中的組織特異因子結合,故在不同組織中同一基因會產生不同的轉錄物與轉錄后加工作用。此外真核生物基因可有一個以一的poly(A)位點,因此能在不同的細胞中產生具有不同3’末端的前mRNA,從而會有不同的剪接方式。由於大多數真核生物基因的轉錄物是先加poly(A)尾巴,然後再行剪接,因此不同組織、細胞中會有不同的因子干預多聚腺苷酸化作用,最後影響剪接模式。
基因表達
玉米是全球第一大作物、中國第二大作物,而乾旱是影響其產量的重要限制因素。山東大學生命科學院張舉仁教授的課題組利用基因晶元技術研究了開花期玉米頂葉乾旱脅迫下基因的表達。開花期是玉米需水臨界期,對乾旱脅迫反應最敏感,此時逢乾旱會使產量下降幅度最大。張教授的課題組以開花期玉米為材料,分別對其進行短期和長期的乾旱脅迫,採用全基因組晶元研究了頂葉中基因的表達情況。
分析的結果表明,有197個基因在短期脅迫下差異表達(53%上調),而在長期脅迫下,則有1009個基因差異表達(32%上調)。分離得到的差異表達基因中約有一半的基因功能未知,其他基因按功能則可分為:代謝相關;細胞信號轉導;轉錄相關;蛋白質合成;細胞防禦;細胞運輸;亞細胞定位等幾大類。分析實驗表明,在短期脅迫下上調錶達的基因中,約有1/3的已知功能基因屬於信號轉導功能的分類範疇,參與細胞內不同的信號轉導途徑,這表明信號轉導相關基因在玉米對乾旱的早期反應中起重要作用。而在長期乾旱條件下,頂葉中大量的代謝相關基因差異表達。
吸煙者肺細胞的基因表達模式有助於肺癌的早期診斷
在全世界癌症患者的死亡率中,肺癌的死亡率位居前列。肺癌高死亡率的主要原因之一是缺乏早期診斷工具。研究人員在3月出版的《自然—醫學》中報道:吸煙者肺細胞的基因表達模式也許有助於肺癌的早期診斷。
眾所周知,吸煙是肺癌的風險因子,因此吸煙者被認為是肺癌的高風險人群。吸煙者的正常上皮細胞的基因表達模型是否可用於肺癌存在狀態的一種生物標誌呢?AvrumSpira和同事進行了這一研究。在預測患者是否會向癌症發展時,他們研究的生物標誌的準確率達到90%。當與其他歷史數據結合在一起,準確率可增加到95%。
Mdk是一種分泌型蛋白,在神經發育中有重要作用,並參與人類腫瘤的形成。但是,在不同種類的脊椎動物中,Mdk基因的表達模式卻大相徑庭。該文報道了從銀鯽10體節胚胎的SMARTcDNA文庫中克隆的銀鯽Mdkb基因的特徵、表達圖式及功能。在銀鯽胚胎髮育過程中,CagMdkb基因在原腸期開始表達,在10體節期時表達量上升到最高,此後表達量保持穩定。Western印跡顯示胚胎早期有一條19kDa的母源CagMdkb蛋白帶,合子CagMdkb蛋白從原腸期開始產生。大約在10體節時,19kDa的CagMdkb蛋白剪掉了信號肽,變成17kDa的成熟蛋白。在胚胎髮育早期,母源的CagMdkb蛋白在所有卵裂球的細胞質中被檢測到。
當胚胎髮育到18體節期時,新合成蛋白的信號出現在後腦的一對巨大神經元中。此後,新合成的CagMdkb蛋白延伸到前腦、中腦、後腦的神經元和脊髓的神經纖維中。3A10抗體共定位表明這對巨大的神經元是Mauthner神經元。在銀鯽和斑馬魚受精卵中進行的基因轉移實驗發現,野生型CagMdkbRNAs的過量表達造成了胚胎前腦組織和眼睛發育受到抑制等嚴重缺陷,並發現其功能的發揮還依賴於它的分泌特性。上述結果表明,CagMdkb在魚類神經系統的早期發育中起著重要作用。
DNA個體差異能導致基因表達蛋白大不同
研究人員證明DNA水平上個體之間的微小差異能導致基因表達蛋白的巨大不同,這導致了個體之間的自然特徵的許多變化。在人類由30億個鹼基對、大約數萬個基因組成的基因組中,哪些基因或者基因的突變可能導致疾病?這種尋找致病基因的工作通常如同大海撈針。人類基因組計劃(HGP)和人類基因組單體型圖計劃(HapMap)這兩個超級研究項目的設立興起了一場致病基因淘金熱,其中科學家使用了一種稱為“全基因組關聯研究”的方法,尋找可能的致病因素。
這種新的方法把注意力集中在人類基因組的一種微小突變上。這種突變是指DNA上的某個“字母”被另外一個字母取代(例如AAG變成了ATG),它被稱作“單核苷酸多態性”(SNP)。科學家估計,在人類基因組中可能存在約1500萬個單字母突變,或者說,在人類這個遺傳結構相當統一的群體內,還有1500萬個可能的SNP。藉助於基因晶元等新技術,科學家可以同時分析一個人的基因組中的數十萬個SNP。把許多健康人和疾病患者(這些人不一定必須屬於同一個家族)的SNP結果放在一起,SNP的分佈狀況就可以顯示出致病基因的一些蛛絲馬跡。
基因 | RACE技術 | 染色體 | 生物學 |
熒光反應 | 動物學 | 基因探針 | 植物學 |
生物谷 http://www.bioon.com/biology/Special/expression/
中小學資源網 http://www.i3721.com/shengwu/gaosanshengwu/disanzhang/disanjie/
課件網http://www.ekejian.com/class/RJXX00001/GZ02428/SW05602/XX05603/YCYJYGC05616/index5618.html