激光光譜
以激光為光源的光譜技術
激光光譜是以激光為光源的光譜技術。與普通光源相比,激光光源具有單色性好、亮度高、方向性強和相干性強等特點,是用來研究光與物質的相互作用,從而辨認物質及其所在體系的結構、組成、狀態及其變化的理想光源。激光的出現使原有的光譜技術在靈敏度和解析度方面得到很大的改善。由於已能獲得強度極高、脈衝寬度極窄的激光,對多光子過程、非線性光化學過程以及分子被激發后的弛豫過程的觀察成為可能,並分別發展成為新的光譜技術。激光光譜學已成為與物理學、化學、生物學及材料科學等密切相關的研究領域。
可調(諧)激光光源實際上是一台可調諧激光器,又稱波長可變激光器或調頻激光器。它所發出的激光,波長可連續改變,是理想的光譜研究用光源,可調激光器的波長範圍在真空紫外的118.8納米至微波的8.3毫米之間。可調激光器分為連續波和脈衝兩種,脈衝激光的單色性比一般光源好,但其線寬不能低於脈寬的倒數值,解析度較低。用連續波激光器作光源時,解析度可達到10-9(線寬<1兆赫)。
激光用於吸收光譜,可取代普通光源,省去單色器或分光裝置。激光的強度高,足以抑制檢測器的雜訊干擾,激光的准直性有利於採用往複式光路設計,以增加光束通過樣品池的次數。所有這些特點均可提高光譜儀的檢測靈敏度。除去通過測量光束經過樣品池后的衰減率的方法對樣品中待測成分進行分析外,由於激光與基質作用后產生的熱效應或電離效應也較易檢測到,以此為基礎發展而成的光聲光譜分析技術和激光誘導熒光光譜分析技術已獲得應用。利用激光誘導熒光、光致電離和分子束光譜技術的配合,已能有選擇地檢測出單個原子的存在。
高強度激光能夠使吸收物種中相當數量的分子提升到激發量子態。因此極大地提高了熒光光譜的靈敏度。以激光為光源的熒光光譜適用於超低濃度樣品的檢測,例如用氮分子激光泵浦的可調染料激光器對熒光素鈉的單脈衝檢測限已達到10-10摩爾/升,比用普通光源得到的最高靈敏度提高了一個數量級。