楊維才
遺傳與發育生物學研究所所長
1984年蘭州大學學士。1987年蘭州大學碩士。1994年荷蘭Wageningen大學博士。1996年美國Cold Spring Harbor實驗室博士后,1996-2000年新加坡國立大學分子農業生物學院博士后。2000-2002年新加坡Temasek Life Sciences Laboratory高級科學家,植物生殖和棉花生物技術實驗室主任。2003年加入中國科學院遺傳與發育生物學研究所,2004年獲中國科學院“百人計劃”擇優支持。2004年國家傑出青年科學基金獲得者。2021年8月1日,2021年中國科學院院士增選初步候選人名單公布,楊維才位列其中。2021年11月,入選2021年中國科學院院士增選當選院士名單。
楊維才
植物生殖發育的調控機制和進化機制:利用分子遺傳學、細胞生物學、基因組學等多學科手段,解析開花植物精子傳遞、雌-雄配子互作、雙受精和胚胎髮生的分子機制,了解植物生殖發育機制的進化規律。
豆科植物共生固氮機制及其生物技術改良:利用分子遺傳學和蛋白組學等手段,解析豆科植物共生固氮微環境構建和維持的分子機制,探索實現非豆科植物固氮的途徑。
植物雌配子體發育
植物生殖生物學是一門傳統學科,傳統的研究主要集中於對生殖過程的結構,形態和組織胚胎學描述,由於方法和技術方面的局限,對其分子及遺傳機理的研究進展非常緩慢。年來由於Gene/enhancer Trap等系統和激光共聚焦顯微技術的應用。植物生殖生物學的研究出現了一線生機。研究組研究的領域主要集中在植物雌配子體的發育方面,如孢原細胞和胚囊中卵細胞,中央細胞的命運決定機理等。通過對配子體突變體的遺傳分析和基因克隆,了解植物生殖過程中的基因調控及分子機理。而對一些基本的生物學現象,如細胞極性、細胞命運的確立及受精機理等進行更深入的研究,了解植物的生殖過程。
以擬南芥為模式研究水稻基因組功能
在過去20多年,擬南芥作為模式植物在植物分子生物學,遺傳學,植物病理學,次生代謝和發育生物學研究方面得到了非常廣泛的應用,其6-8周的生活周期,相對小的基因組,自交,易於遺傳轉化,非常適合大規模繁殖等特點,使其成為首選的模式植物。該研究組希望建立一套以擬南芥為基礎的,快速有效的實驗系統,來研究農作物如水稻的基因功能,為農業生產提供技術儲備。
楊維才研究組目前的研究方向是:植物生殖發育的分子遺傳學,尤其是雌配子體和胚胎髮育過程中細胞極性、細胞命運、細胞分化和雌雄配子細胞相互作用的分子遺傳機制,其目標是利用擬南芥、水稻等模式植物來探討發育生物學的基本問題,並以此為模式研究農作物基因功能。
研究主要集中在以下三個方面:1.生殖細胞分化的分子機理:利用Gene Trap和Enhancer Trap等插入突變系統和激光共聚焦顯微技術,通過對配子體突變體的遺傳分析和基因克隆,研究植物雌配子體發育的遺傳調控機制,了解植物有性生殖過程中的基因調控及分子機理。2.雌雄生殖細胞識別與受精的分子機理:通過分子遺傳學和細胞生物學等多學科手段,研究花粉管定向生長和雌雄生殖細胞識別和相互作用的分子機理。3.農作物重要農藝性狀的生物技術改良:利用功能基因組學方法,克隆重要功能基因並研究其作用機理,建立農作物快速有效的遺傳轉化實驗系統,通過轉基因技術改良農作物。
1.Luo, Y., Shi, D.-Q., Jia, P.-F., Bao, Y., Li, H.-J., Yang, W.-C. (2021). Nucleolar histone deacetylases HDT1, HDT2 and HDT3 regulate plant reproductive development, Journal of Genetics and Genomics, https://doi.org/10.1016/j.jgg.
2.Meng, J. G., Liang, L., Jia, P.F., Wang, Y.C., Li, H.J., and Yang, W.C. (2020). Integration of ovular signals and exocytosis of a Ca channel by MLOs in pollen tube guidance. Nature Plants 6: 143–153.
3.Zhang, M.X., Zhu, S.S., Xu, Y.C., Guo, Y.L., Yang, W.C., and Li, H.J. (2020). Transcriptional repression specifies the central cell for double fertilization. PNAS doi/10.1073/pnas.1909465117.
4.Tang, J., Jia, P., Xin, P., Chu, J., Shi, D., and Yang, W. (2020). AtTRM61/AtTRM6 complex is a bona fide tRNA N1-methyladenosine methyltransferase in Arabidopsis. Journal of Experimental Botany 71: 3024-3036.
5.Chen, W., Jia, P.F., Yang, W.C., and Li, H.J. (2020). Plasma membrane H-ATPase-mediated cytosolic proton gradient regulates pollen tube growth. Journal of Integrative Plant Biology 62: 1817-1822.
6.Li, H.J., and Yang, W.C., (2020). Central cell in flowering plants specication, signaling, and evolution. Frontiers in Plant Science 11:590307. doi: 10.3389/fpls.2020.590307.
7.Wu, H.M., Xie, D.J., Tang, Z.S., Shi, D.Q., and Yang, W.C. (2020). PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice. Plant Biotechnology Journal 18: 1778-1795.
8.Zhao, P., Wang, F., Li, N., Shi, D.Q., and Yang, W.C. (2020). Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development. Scientific Reports 10: 2008.
9.Iftikhar, A. and Yang, W.C. (2020). The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adhesion & Migration 14: 139-152.
10.Iftikhar, A. and Yang, W.C. (2020). Why are ATP-driven microtubule minus-end directed motors critical to plants? An overview of plant multifunctional kinesins. Functional Plant Biology 47: 524–536.
11.Shi, C., Luo, P., Du, Y.T., Chen, H., Huang, X., Cheng, T.H., Luo, A., Li, H.J., Yang, W.C., Zhao, P., and Sun, M.X. (2019). Maternal control of suspensor programmed cell death via gibberellin signaling. Nature Communications 10: 3484.
12.Long, Y., Xie, D., Zhao, Y., Shi, D., and Yang, W.C. (2019). BICELLULAR POLLEN 1 is a modulator of DNA replication and pollen development in Arabidopsis. New Phytologist 222: 588–603
13.Meng, J.G., Zhang, M.X., Yang, W.C., and Li, H.J. (2019). TICKET attracts pollen tubes and mediates reproductive isolation between relative species in Brassicaceae. SCIENCE CHINA Life Sciences 62:1413-1419
14.Li, Y., Li., H.J., Morgan, C., Bomblies, K., Yang, W., and Qi, B. (2019). Both male and female gametogenesis require a fully functional protein S-acyl transferase 21 in Arabidopsis thaliana. Plant Journal 100:754-767.
15.Jia, P.F., Xue, Y., Li, H.J., and Yang, W.C. (2019). LOT regulates TGN biogenesis and Golgi structure in plants. Plant Signaling & Behavior 14(3): e1573100.
16.Jia, P.F., Xue, Y., Li, H.J., and Yang, W.C. (2018). Golgi-localized LOT regulates trans-Golgi network biogenesis and pollen tube growth. PNAS 115: 12307-12312
17.Li, H.J. and Yang, W.C. (2018). Ligands switch model for pollen-tube integrity and burst. Trend Plant Sci 23: 369-372.
18.van Velzena, R., Holmer, R., Bua, F., Rutten, L., van Zeijl, A., Liu, W., Santuari, L., Cao, Q., Sharma, T., Shen, D., Roswanjaya, Y., Wardhani, T.A.K., Kalhor, M.S., Jansen, J., van den Hoogen, J., Güng?r, B., Hartog, M., Hontelez, J., Verver, J., Yang, W.C., Schijlen, E., Repin, R., Schilthuizen, M., Schranz, M.E., Heidstra, R., Miyata, K., Fedorova, E., Kohlen, W., Bisseling, T., Smit, S., and Geurts, R. (2018). Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. PNAS 115: E4700-E4709.
19.Li, H.J., Meng, J.G., and Yang, W.C. (2018). Multilayered signaling pathways for pollen tube growth and guidance. Plant Reproduction 31, 31-41.
20.Sun, M.X., Yang, W.C., and Higashiyama, T. (2018). Special issue on plant reproduction research in Asia. Plant Reproduction 31:1-2.
21.Higashiyama, T.*, and Yang, W.C. (2017). Gametophytic pollen tube guidance: Attractant peptides, gametic controls, and receptors. Plant Physiology 173(1):112-121.
22.Jia, P.F., Li, H.J., and Yang, W.C. (2017). Analysis of peroxisome biogenesis in pollen by confocal microscopy and transmission electron microscopy. In Plant Germline Development: Methods and Protocols (Ed. Anja Schmidt), PP. 173-180. Methods in Plant Molecular Biology 1669. Springer protocols.
23.Jia, P.F., Li, H.J., and Yang, W.C. (2017). Transmission electron microscopy (TEM) to study histology of pollen and pollen tubes. In Plant Germline Development: Methods and Protocols (Ed. Anja Schmidt), PP. 181-189. Methods in Plant Molecular Biology 1669. Springer Protocols.
24.Yu, T.Y., Shi, D.Q., Jia, P.F., Tang, J., Li, H.J., Liu, J., and Yang WC. (2016). The Arabidopsis receptor kinase ZAR1 is required for zygote asymmetric division and its daughter cell fate. PLoS Genetics 12(3): e1005933.
25.Wang, T., Liang, L., Xue, Y., Jia, P.F., Chen, W., Zhang, M.X., Wang, Y.C., Li, H.J. and Yang, W. C. (2016). A receptor heteromer mediates the male perception of female attractants in plants. Nature 531: 241-244.
26.Li, H., and Yang W.C. (2016). RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59: 867-77.
27.Zhou, J.M., and Yang, W.C. (2016) Receptor-like kinases take center stage in plant biology. Sci China Life Sci 59: 863-6.
28.Li, H.J., Zhu, S.S., Zhang, M.X., Wang, T., Liang, L., Xue, Y., Shi, D.Q., Liu, J., and Yang, W.C. (2015). Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. Plant Cell 27: 2880-2893.
29.Wang, J.Z., Li, H.J., Han, Z.F., Zhang, H.Q., Wang, T., Lin, G.Z., Chang, J.B., Yang, W.C. and Chai, J.J. (2015). Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature 525: 265-268.
30.Yan, L.H., Wei, S.W., Wu, Y.R., Hu, R.L., Li, H.J., Yang, W.C., and Xie, Q.* (2015). High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Molecular Plant 8: 1820-1823.
31.Chen, L.Y., Shi, D.Q., Zhang, W.J., Tang, Z.S., Liu, J., and Yang, W.C. (2015). The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nature Communications 6: 6030.
32.Chen, G.H., Sun, J.Y., Liu, M., Liu, J., and Yang, W.C. (2014). SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis. J Genet Genom 41(12), 617-625.
33.Li, X.R., Li, H.J., Yuan, L., Liu, M., Shi, D.Q., Liu, J., and Yang W.C. (2014). Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 is a key regulator of peroxisome biogenesis and plays critical roles during pollen maturation and germination in planta. Plant Cell 26: 619-635.
34.Liu, P., Qi, M., Wang, Y., Chang, M., Liu, C., Sun, M., Yang, W., and Ren, H. (2014). Arabidopsis RAN1 mediates seed development through its parental ratio by affecting the onset of endosperm cellularization. Molecular Plant 7: 1316–1328.
35.Zhu, Y.N., Shi, D.Q., Ruan, M.B., Zhang, L.L., Meng, Z.H., Liu, J., and Yang, WC. (2013). Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS ONE 8: e80218.
36.Cheung, A.Y., Palanivelu, R., Tang, W.H., Xue, H.W., and Yang, W.C. (2013). Pollen and plant reproduction biology: Blooming from east to west. Molecular Plant 6: 995–997.
37.Wang, S.Q., Shi, D.Q., Long, Y.P., Liu, J., and Yang, W.C. (2012) GAMETOPHYTE DEFECTIVE 1, a putative subunit of RNases P/MRP, is essential for female gametogenesis and male competence in Arabidopsis. PLoS One 7: e33595.
38.Li, H.J. and Yang, W.C. (2012). Emerging role of ER quality control in plant cell signal perception. Protein & Cell 3: 10-16.
39.Zhao, Y.T., Wang, M., Fu, S.X., Yang, W.C., Qi, C.K., and Wang, X.J. (2012). Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production and developmental correlated expressions and new small RNA classes. Plant Physiology 158: 813-823.
40.Liu, W., Kohlen, W., Lillo, A., Op den Camp, R., Ivanov, S., Hartog, M., Limpens, E., Jamil, M., Smaczniak, C., Kaufmann, K., Yang, W.C., Hooiveld, G.J.E.J., Charnikhova, T., Bouwmeester, H.J., Bisseling, T., and Geurts, R. (2011). Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23: 3853-3865.
41.Li H.J., Xue Y., Jia D.J., Wang T., Shi D.Q., Liu J., Cui F., Xie Q., Ye D., and Yang W.C. (2011). POD1 regulates pollen tube guidance in response to micropylar female signalling and acts in early embryo patterning in Arabidopsis. Plant Cell 23: 3288–3302.
42.Shi, D.Q.* and Yang, W.C.* (2011). Ovule development in Arabidopsis: progress and challenge. Curr Opin Plant Biol 14: 74-80.
43.Zhao, P., Shi, D.Q., Yang, W.C. (2011). Patterning the embryo in higher plants: Emerging pathways and challenges. Frontiers in Biology 6: 3-11.
44.Li, H.J., Liu, N.Y., Shi, D.Q., Liu, J., and Yang, W.C. (2010). YAO is a nucleolar WD40-repeat protein critical for embryogenesis and gametogenesis in Arabidopsis. BMC Plant Biology 10:169.
45.Liu, M., Shi, D.Q., Yuan, L., Liu J., and Yang, W.C. (2010). SLOW WALKER3, encoding a putative DEAD-box RNA helicase, is essential for female gametogenesis in Arabidopsis. J Integrat Plant Biol 52: 817-828.
46.Yang, W.C.*, Shi, D.Q., and Chen, Y.H. (2010). Female gametophyte development in flowering plants. Annu Rev Plant Biol 61: 89–108.
47.Deng, Y., Dong, H., Mu, J., Ren, B., Zheng, B., Ji, Z., Yang, W.C., Liang, Y., and Zuo, J. (2010). Arabidopsis histidine kinase CKI1 acts upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to regulate female gametophyte development and vegetative growth. Plant Cell 22: 1232–1248.
48.Shi, D.Q. and Yang, W.C. (2009). Pollen germination and tube growth. In Plant Developmental Biology – Biotechnological Perspectives (eds. E.C. Pua and M.R. Davey), Springer-Verlag, Heidelberg. Vol. I, pp245-282.
49.Li, N., Yuan, L., Liu, N., Shi, D., Li, X., Tang, Z., Liu, J., Sundaresan, V., and Yang, W.C. (2009). SLOW WALKER2, a NOC1/MAK21 homologue, is essential for coordinated cell cycle progression during female gametophyte development in Arabidopsis. Plant Physiology 151: 1486-1497.
50.Ruan, M.B., Zhao, Y.T., Meng, Z.H., Wang, X.J., and Yang W.C. (2009). Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics 94: 263-268.
51.Liu, M., Yuan, L., Liu, N.Y., Shi, D.Q., Liu, J., and Yang, W.C. (2009). GAMETOPHYTIC FACTOR1, involved in pre-mRNA splicing, is essential for megagametogenesis and embryogenesis in Arabidopsis. J Integrat Plant Biol 51: 261-271.
52.Liu, N.Y., Zhang, Z.F., and Yang, W.C. (2008). Isolation of embryo-specific mutants in Arabidopsis: Plant transformation. In Methods in Molecular Biology: Plant Embryogenesis (ed. M.F. Suarez and P.V. Bozhkov), pp91-100. Humana Press, Totowa, USA.
53.Liu, N.Y., Zhang, Z.F., and Yang, W.C. (2008). Isolation of embryo-specific mutants in Arabidopsis: Genetic and phenotypic analysis. In Methods in Molecular Biology: Plant Embryogenesis (ed. M.F. Suarez and P.V. Bozhkov), pp101-109. Humana Press, Totowa, USA.
54.Pu, L., Li, Q., Fan, X.P., Yang, W.C., and Xue, Y.B. (2008). A R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180: 811-820.
55.Wang, F., Shi, D.Q., Liu, J., and Yang, W.C. (2008). Novel nuclear protein ALC-INTERACTING PROTEIN1 is expressed in vascular and mesocarp cells in Arabidopsis. J Integrat Plant Biol 50: 918-927.
56.Liu, J., Zhang, Y., Qin, G., Tsuge, T., Sakaguchi, N., Luo, G., Sun, K., Shi, D., Aki, S., Zheng, N., Aoyama, T., Oka, A., Yang, W.C., Umeda, M., Xie, Q., Gu, H., and Qu L.J. (2008). Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell 20: 1538-1554.
57.Chen, Y.H., Li, H.J., Shi, D.Q., Yuan, L., Liu, J., Sreenivasan, R., Baskar, R., Grossniklaus, U., and Yang, W.C. (2007). The central cell plays a critical role for pollen tube guidance in Arabidopsis. Plant Cell 19: 3563-3577.
58.Escobar-Restrepo, J.M., Huck, N., Kessler, S., Gagliardini, V., Gheyselinck, J., Yang, W.C., and Grossniklaus, U. (2007). The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317: 656-660.
59.Meng, Z.H., Liang, A.H., and Yang, W.C. (2007). Effects of hygromycin on cotton cultures and its application in Agrobacterium-mediated cotton transformation. In Vitro Cell Dev Biol-Plant 43: 111-118.
60.Song, X.F., Yang, C.Y., Liu, J., and Yang, W.C. (2006). RPA, a Class II ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiology 141: 966-976.
61.Ding, Y.H., Liu, N.Y., Tang, Z.S., Liu, J., and Yang, W.C. (2006). Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell 18: 815-830.
62.Chen, Y.H., Wu, X.M., Ling, H.Q., and Yang, W.C. (2006). Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Research 16: 830-840.
63.Yang, W.C. (2005). Female gametophyte development, In Handbook of Seed Science and Technology (ed. Basra, A.S.), pp.27-62. The Haworth Press, Inc. New York.
64.Yang, S.L., Jiang, L., Puah, C.S., Xie, L.F., Zhang, X.Q., Chen, L.Q., Yang, W.C., and Ye, D. (2005). Overexpression of TAPETUM ETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS. Plant Physiology 139: 186-191.
65.Shi, D.Q., Liu, J., Xiang, Y.H., Ye, D., Sundaresan, V., and Yang, W.C. (2005). SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell 17: 2340-2354.
66.Li, X.B., Fan, X.P., Wang, X.L., Cai, L., and Yang, W.C. (2005). The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17: 859-875.
67.Jiang, J., Yang, S.L., Xie, L.F., Puah, C.S., Zhang, X.Q., Yang, W.C., Sundaresan, V., and Ye, D. (2005). VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584-596.
68.Rotman, N., Durbarry, A., Wardle, A., Yang, W.C., Chaboud, A., Faure, J.-F., Berger, F., and Twell, D. (2005). A novel class of MYB factors controls sperm-cell formation in plants. Current Biology 15: 244-248.
69.Yang, S.L., Xie, L.F., Mao, H.Z., Puah, C.S., Yang, W.C., Lixi Jiang, L.X., Sundaresan, V., and Ye, D. (2003). The TAPETUM DETERMINANT 1 gene is required for cell specialization in the Arabidopsis anther. Plant Cell 15: 2792-2804.
70.Wu, X.M. Lim, S.H., and Yang, W.C. (2003). Characterization, expression and phylogenetic study of R2R3-MYB genes in orchid. Plant Mol Biol 51: 959-972.
71.Compaan, B., Yang. W.C., Bisseling, T., and Franssen, H. (2001). ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide. Plant & Soil 230: 1-8.
72.Yang, W.C., and Sundaresan, V. (2000). Genetics of gametophyte biogenesis in Arabidopsis. Curr Opin Plant Biol 3: 53-57.
73.Yang, W.C., Ye, D., Xu, J., and Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for sporogenesis and encodes a novel protein. Genes & Development 13: 2108-2117.
74.Yang, W.C. (1999). Molecular mechanism of root nodule formation. In Molecular Mechanisms of Plant Development (ed. Z.H. Xu and C.M. Liu) (in Chinese). Science Press, Beijing, China.
75.Kumaran, M., Ye, D., Yang, W.C., and Sundaresan, V. (1999). Molecular cloning of abnormal floral organs: a gene required for flower development in Arabidopsis. Sex Plant Reprod 12: 118-122.
76.Parinov, S., Sevugan, M., Ye, D., Yang, W.C., Kumaran, M., and Sundaresan, V. (1999). Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 1-9.
77.Heidstra, R., Yang, W.C., Yalcin, Y., Peck, S., Emons, A., Van Kammen, A., and Bisseling, T. (1997). Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124: 1781-1787.
78.Meskiene, I., Yang, W.C., De Blank, C., Bogre, L., Zwerger, K., Brandstotter, M., Mattauch, M., Bisseling, T., and Hirt, H. (1996). Cell cycle regulation during nodule development. In Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture/NATO ASI series, Series G, Ecological Sciences, 39:63-65.
79.Christiansen, H., Hansen, A.C., Vijn, I., Pallisgaard, N., Larsen, K., Yang W.C., Bisseling, T., Marcker, K.A., and Jensen, E.O. (1996). A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter. Plant Mol Biol 32: 809-821.
80.Vijn, I., Yang W.C., Pallisgaard, N., Ostergaard Jensen, E., van Kammen, A., and Bisseling, T. (1995). VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol Biol 28: 1111-1119.
81.Vijn, I., Martinez-Abarca, F., Yang, W.C., das neves, L., van Brussel, A., van Kammen, A., and Bisseling, T. (1995). Early nodulin gene expression during Nod factor-induced processes in Vicia sativa. Plant Journal 8: 111-119.
82.Bialek, U., Skorupska, A., Yang, W.C., Bisseling, T., and Van Lammeren, A.A.M. (1995). Disturbed gene expression and bacteroid development in Trifolium pratense root nodules induced by a Tn5 mutant of Rhizobium leguminosarum bv. trifolii defective in exopolysaccharide synthesis. Planta 197: 184-192.
83.Brito, B., Palacios, J.M., Imperial, J., Ruiz-Argueso, T., Yang, W.C., Bisseling, T., Schmidt, H., Kerl, V., Bauer, T., Kokotek, W., and Lotz, W. (1995). Temporal and spatial co-expression of hydrogenase and nitrogenase genes from Rhizobium leguminosarum bv. viciae in pea (Pisum sativum L.) root nodules. Mol Plant-Micobe Interact 8: 235-240.
84.Mylona, P., Moerman, M., Yang, W.C., Gloudemans, T., De Kerkhove, J., Van Kammen, A., Bisseling, T., and Franssen, H.J. (1994). The root epidermis specific pea gene RH2 is homologous to a pathogen related gene. Plant Mol Biol 26: 39-50.
85.Matvieko, M., Van de Sande, Yang, W.C., K., Van Kammen, A., Bisseling, T., and Franssen, H. (1994). Comparison of soybean and pea ENOD40 cDNA clones representing genes expressed during both early and late stages of nodule development. Plant Mol Biol 26: 487-493.
86.Yang, W.C., De Blank, C., Meskiene, I., Hirt, H., Bakker, J., Van Kammen, A., Franssen, H., and Bisseling, T. (1994). Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6: 1415-1426.
87.De Maagd, R.A., Yang, W.C., Goosen-de Roo, L., Mulders, I.H.M., Roest, H.P., Spaink, H.P., Bisseling, T., and Lugtenberg, B.J.J. (1994). Down-regulation of expression of the Rhizobium leguminosarum outer membrane protein gene ropA occurs abruptly in interzone II-III of pea nodules and can be uncoupled from nif gene activation. Mol Plant-Microbe Interact 7: 276-281.
88.Kardailsky, I., Yang, W.C., Zalensky, A., Van Kammen, A., and Bisseling, T. (1993). The pea late nodulin gene PsNOD6 is homologous to the early nodulin genes PsENOD3/14 and is expressed after the leghaemoglobin genes. Plant Mol Biol 23: 1029-1037.
89.Franssen, H., Yang, W.C., Katinakis, P. and Bisseling, T. (1993). Characterization of GmENOD40, a gene expressed in soybean nodule primordia. Curr Plant Sci Biotechnol Agric 17: 275-284.
90.Yang, W.C., Katinakis, P., Hendriks, P., Smolders, A., De Vries, F., Spee, J., Van Kammen, A., Bisseling, T., and Franssen, H. (1993). Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant Journal 3: 573-585.
91.Yang, W.C., and Bisseling, T. (1993). Nodulin gene expression during pea nodule development. In Current Developments in Soybean-Rhizobium Symbiotic Nitrogen Fixation (ed. X. Dou). Heilongjiang Science & Technology Publishing House, Harbin, China, pp55-62.
92.De Blank, C., Mylona, P., Yang, W.C., Katinakis, P., Bisseling, T., and Franssen, H. (1993). Characterization of the soybean early nodulin cDNA clone GmENOD55. Plant Mol Biol 22: 1167-1171.
93.Franssen, H., Heidstra, R., Geurts, R., Horvath, B., Moerman, M., Yang, W.C., Vijn, I., and Bisseling, T. (1993). Nodulin genes as molecular markers to study Rhizobium nod factor activity. Plant Signals in Interactions with Other Organisms (Penn. State Symposium in Plant Physiology: Current Topics in Plant Physiology), 11:164-170.
94.Yang, W.C., Canter Cremers, H.C.J., Hogendijk, P., Katinakis, P., Wijffelman, C.A., Franssen, H., Van Kammen, A., and Bisseling, T. (1992). In-situ localization of chalcone synthase mRNA in pea root nodule development. Plant Journal 2: 143-151.
95.Franssen, H., Vijn, I., Yang, W.C., and Bisseling, T. (1992). Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol 19: 89-107.
96.Yang, W.C., Horvath, B., Hontelez, J., Van Kammen, A., and Bisseling, T. (1991). In situ localization of Rhizobium mRNAs in pea root nodules: nifA and nifH localization. Mol Plant-Microbe Interact 4: 464-468.
97.Franssen, H., Scheres, B., Van De Wiel, C., Horvath, B., Moerman, M., Yang, W.C., Govers, F., and Bisseling, T. (1990). Nodulins and nodule development. In Nitrogen Fixation: Achievements and Objectives (ed. P.M. Gresshoff). P709-712.
1.Multinational Arabidopsis Steering Committee中國區代表(2006-2016)
2.International Association of Sexual Plant Reproduction Research (IASPRR), Board member (2004-2006)
3.中國遺傳學會常務理事 (2008-2018年)、副理事長/兼秘書長(2019-2024年)
4.中國細胞生物學會理事 (2007-2011年)
5.《植物學報》副主編 (2008-2014年)
6.Journal of Integrative Plant Biology副主編 (2008-2016年)
7.Journal of Genetics and Genomics 副主編 (2010年-)
8.Journal of Plant Biology編委 (2012-2016年)
9.Plant Signaling and Behavior編委 (2008-2016年)
10.Cell Research編委 (2006-2010年)
11.Molecular Plant編委 (2007年- )
12.Sexual Plant Reproduction編委 (2011-2012年)
13.Plant Reproduction編委 (2013年-)
14.Scientific Reports編委 (2011年-)
15.Science in China: Life Science編委 (2008年-)
16.aBiotech編委(2019年-)
2004年,獲國家自然科學基金委“國家傑出青年基金”資助。
2007年,獲中國科學院“優秀研究生指導教師“獎;獲准享受政府特殊津貼;人事部“新世紀百千萬人才工程國家級人才人選”。
2008年,獲中國科學院“寶潔優秀研究生導師”獎。
2008年,獲International Association of Sexual Plant Reproduction Research, Outstanding Service Award。
2013年,國家自然科學獎(二等),”被子植物有性生殖的分子機理研究。
2016年,獲“全國優秀科技工作者”(中國科協);入選“科學中國人(2015)年度人物”;獲中國科學院優秀教師獎。
2018年,獲中國科學院優秀教師獎。
2021年8月1日,入選2021年中國科學院院士增選初步候選人名單。
2021年11月,入選2021年中國科學院院士增選當選院士名單。
楊維才——中國科學院遺傳與發育生物學研究所(簡稱“遺傳發育所”)所長。長期以來,他投身於植物生殖發育調控機理研究,在Nature等雜誌上發表論文65篇,主持的“被子植物有性生殖的分子機理研究”獲2013年度國家自然科學獎二等獎,是該領域具有重要國際影響的學者。在科學中國人(2015)年度人物評選中,楊維才因其突出貢獻當選為生命科學領域年度人物。
2016年,他的團隊對雌雄配子識別分子機制的系列研究取得了具有重大國際影響的突破,分離了花粉管識別胚囊雌性吸引信號的受體蛋白複合體並揭示其激活的分子機制。該研究通過基因工程手段建立利用生殖關鍵基因打破生殖隔離的方法,為克服雜交育種中雜交不親和性提供了重要理論依據。