原子熒光光譜儀
原子熒光光譜儀
原子熒光光譜儀,測量元素的原子蒸氣在輻射能激發下所發射的熒光強度,以測定物質成分中元素含量的儀器。
由激發光源(高強度空心陰極燈或無極放電燈),原子化器,單色儀或用干涉濾光片配合使用“日盲”光電倍增管和光電檢測系統組成。其原理是:分析試樣在原子化器中轉化為低能級的原子蒸氣,吸收由一合適的激發光源發射出的同類原子特徵光輻射后,一部分被激發至高能級,在躍遷至低能級的過程中,以輻射的形式釋放出能量,形成原子熒光。原子熒光經光電檢測系統轉換為電信號被記錄下來。原子熒光的強度與激發態的原子數有關,也即與試樣中分析元素的濃度成正比。原子熒光光譜儀的優點是能同時測定多種元素,特別是As,Sb,Bi,Cd,Hg等元素。一般情況下,測定下限比原子吸收法低。在地質學中用於測定岩石、礦石和礦物中易揮發元素和硒、碲等元素。
atomic fluorescence spectrometry
利用原子熒光譜線的波長和強度進行物質的定性與定量分析的方法。原子蒸氣吸收特徵波長的輻射之後,原子激發到高能級,激發態原子接著以輻射方式去活化,由高能級躍遷到較低能級的過程中所發射的光稱為原子熒光。當激發光源停止照射之後,發射熒光的過程隨即停止。原子熒光可分為 3類:即共振熒光、非共振熒光和敏化熒光,其中以共振原子熒光最強,在分析中應用最廣。共振熒光是所發射的熒光和吸收的輻射波長相同。只有當基態是單一態,不存在中間能級,才能產生共振熒光。非共振熒光是激發態原子發射的熒光波長和吸收的輻射波長不相同。非共振熒光又可分為直躍線熒光、階躍線熒光和反斯托克斯熒光。直躍線熒光是激發態原子由高能級躍遷到高於基態的亞穩能級所產生的熒光。階躍線熒光是激發態原子先以非輻射方式去活化損失部分能量,回到較低的激發態,再以輻射方式去活化躍遷到基態所發射的熒光。直躍線和階躍線熒光的波長都是比吸收輻射的波長要長。反斯托克斯熒光的特點是熒光波長比吸收光輻射的波長要短。敏化原子熒光是激發態原子通過碰撞將激發能轉移給另一個原子使其激發,後者再以輻射方式去活化而發射的熒光。
原子熒光光譜儀
根據熒光譜線的波長可以進行定性分析。在一定實驗條件下,熒光強度與被測元素的濃度成正比。據此可以進行定量分析。原子熒光光譜儀分為色散型和非色散型兩類。兩類儀器的結構基本相似,差別在於非色散儀器不用單色器。色散型儀器由輻射光源、單色器、原子化器、檢測器、顯示和記錄裝置組成。輻射光源用來激發原子使其產生原子熒光。可用連續光源或銳線光源,常用的連續光源是氙弧燈,可用的銳線光源有高強度空心陰極燈、無極放電燈及可控溫度梯度原子光譜燈和激光。單色器用來選擇所需要的熒光譜線,排除其他光譜線的干擾。原子化器用來將被測元素轉化為原子蒸氣,有火焰、電熱、和電感耦合等離子焰原子化器。檢測器用來檢測光信號,並轉換為電信號,常用的檢測器是光電倍增管。顯示和記錄裝置用來顯示和記錄測量結果,可用電錶、數字錶、記錄儀等。原子熒光光譜分析法具有設備簡單、靈敏度高、光譜干擾少、工作曲線線性範圍寬、可以進行多元素測定等優點。在地質、冶金、石油、生物醫學、地球化學、材料和環境科學等各個領域內獲得了廣泛的應用。
原子熒光光譜法是通過測量待測元素的原子蒸氣在輻射能激發下產生的熒光發射強度,來確定待測元素含量的方法。氣態自由原子吸收特徵波長輻射后,原子的外層電子從基態或低能級躍遷到高能級經過約10-8s,又躍遷至基態或低能級,同時發射出與原激發波長相同或不同的輻射,稱為原子熒光。原子熒光分為共振熒光、直躍熒光、階躍熒光等。發射的熒光強度和原子化器中單位體積該元素基態原子數成正比,式中:I f為熒光強度;φ為熒光量子效率,表示單位時間內發射熒光光子數與吸收激發光光子數的比值,一般小於1;Io為激發光強度;A為熒光照射在檢測器上的有效面積;L為吸收光程長度;ε為峰值摩爾吸光係數;N為單位體積內的基態原子數。原子熒光發射中,由於部分能量轉變成熱能或其他形式能量,使熒光強度減少甚至消失,該現象稱為熒光猝滅。
物質吸收電磁輻射后受到激發,受激原子或分子以輻射去活化,再發射波長與激發輻射波長相同或不同的輻射。當激發光源停止輻照試樣之後,再發射過程立即停止,這種再發射的光稱為熒光;若激發光源停止輻照試樣之後,再發射過程還延續一段時間,這種再發射的光稱為磷光。熒光和磷光都是光致發光。原子熒光光譜分析法具有很高的靈敏度,校正曲線的線性範圍寬,能進行多元素同時測定。這些優點使得它在冶金、地質、石油、農業、生物醫學、地球化學、材料科學、環境科學等各個領域內獲得了相當廣泛的應用。
原子熒光分析儀分非色散型原子熒光分析儀與散型原子熒光分析儀。這兩類儀器的結構基本相似,差別在於單色器部分。兩類儀器的光路圖如右圖所示:
原子熒光光譜儀儀器構造原理圖
當自由原子吸收了特徵波長的輻射之後被激發到較高能態,接著又以輻射形式去活化,就可以觀察到原子熒光。原子熒光可分為三類:共振原子熒光、非共振原子熒光與敏化原子熒光。
共振原子熒光
原子吸收輻射受激后再發射相同波長的輻射,產生共振原子熒光。若原子經熱激發處於亞穩態,再吸收輻射進一步激
原子熒光光譜發,然後再發射相同波長的共振熒光,此種共振原子熒光稱為熱助共振原子熒光。如In451.13nm就是這類熒光的例子。只有當基態是單一態,不存在中間能級,沒有其它類型的熒光同時從同一激發態產生,才能產生共振原子熒光。
非共振原子熒光
當激發原子的輻射波長與受激原子發射的熒光波長不相同時,產生非共振原子熒光。非共振原子熒光包括直躍線熒光、階躍線熒光與反斯托克斯熒光,
直躍線熒光是激發態原子直接躍遷到高於基態的亞穩態時所發射的熒光,如Pb405.78nm。只有基態是多重態時,才能產生直躍線熒光。階躍線熒光是激發態原子先以非輻射形式去活化方式回到較低的激發態,再以輻射形式去活化回到基態而發射的熒光;或者是原子受輻射激發到中間能態,再經熱激發到高能態,然後通過輻射方式去活化回到低能態而發射的熒光。前一種階躍線熒光稱為正常階躍線熒光,如Na589.6nm,后一種階躍線熒光稱為熱助階躍線熒光,如Bi293.8nm。反斯托克斯熒光是發射的熒光波長比激發輻射的波長短,如In 410.18nm。
原子熒光光譜儀
原子熒光光譜法的優點:
原子熒光光譜(1)有較低的檢出限,靈敏度高。特別對Cd、Zn等元素有相當低的檢出限,Cd可達0.001ng•cm-3、Zn為0.04ng•cm-3。現已有2O多種元素低於原子吸收光譜法的檢出限。由於原子熒光的輻射強度與激發光源成比例,採用新的高強度光源可進一步降低其檢出限。
(2)干擾較少,譜線比較簡單,採用一些裝置,可以製成非色散原子熒光分析儀。這種儀器結構簡單,價格便宜。
(3)分析校準曲線線性範圍寬,可達3~5個數量級。
(4)由於原子熒光是向空間各個方向發射的,比較容易製作多道儀器,因而能實現多元素同時測定。
離子色譜-蒸氣發生/原子熒光及高效液相色譜-蒸氣發生/原子熒光聯用技術應用於砷、汞元素形態分析的新進展
國際上對食品和環境科學中有毒、有害有機污染物高度重視,且在有機污染物的監測分析有了很大發展。人們已越來越認識到砷、汞、硒、鉛、鎘等元素不同化合物的形態其作用和毒性存在巨大的差異。例如砷是一種有毒元素,其毒性與砷的存在形態密切相關,不同形態的毒性相差甚遠。無機砷包括三價砷和五價砷,具有強烈的毒性,甲基砷如一甲基砷、二甲基砷的毒性相對較弱。而廣泛存在於水生生物體內的砷甜菜鹼(AsB)、砷膽鹼(AsC)、砷糖(AsS)和砷脂(AsL)等則被認為毒性很低或是無毒;以及汞元素的化學形態間甲基汞(MMC)、乙基汞(EMC)、苯基汞(PMC)和無機汞(MC),甲基汞的毒性要比無機汞的毒性大得多。因此,對某些元素已不再是總量分析,而是進行各種化合物的形態分析成為一種發展趨勢。
元素形態分析的主要手段是聯用技術,即將不同的元素形態分離系統與靈敏的檢測器結合為一體,實現樣品中元素不同形態的在線分離與測定。目前國外採用聯用技術主要的有高效液相色譜-電感耦合等離子體質譜(HPLC-ICP-MS)[16,17]和離子色譜-電感耦合等離子體質譜(IC-ICP-MS)為主。
蒸氣發生/原子熒光光譜法(VG/AFS)最大的優點是測定砷、汞、硒、鉛和鎘等元素有較高的檢測靈敏度,且選擇性好,又具有多元素檢測能力的獨特優勢,而色譜分離(離子色譜或高效液相色譜)對這些元素是一種極為有效的手段。因此,兩者結合的聯用技術具有無可比擬的最佳效果。
色譜分離與原子熒光光譜儀聯用可獲得高靈敏度優勢外,原子熒光光譜儀採用非色散光學系統,儀器結構簡單,製造成本低,儀器價格比AAS、ICP-AES、ICP-MS便宜。且原子熒光已具備有蒸氣發生系統的專用儀器。因此,簡化了儀器介面技術,以及消耗氣體量較少,分析成本低,易於推廣。我們研製成功離子色譜-蒸氣發生/原子熒光光譜(IC-VG/AFS)和高效液相色譜-蒸氣發生/原子熒光光譜(HPLC-VG/AFS)聯用技術應用於砷、汞、硒元素形態分析發揮了重要作用。
北京瑞利分析儀器公司與中國科學院生態環境研究中心合作開發了高效液相色譜-蒸氣發生/原子熒光光譜(HPLC-VG/AFS)聯用分析技術系統裝置(見圖9)。
圖8 離子色譜-原子熒光光譜聯用技術四種As化合物的分離色譜圖
原子熒光光譜儀與高效液相色譜聯用技術
圖8 離子色譜-原子熒光光譜聯用技術四種As化合物的分離色譜圖
圖9 高液液相色譜-原子熒光光譜聯用技術系統裝置
5.2.1 儀器主要配置及測試條件
AF-610D聯用技術原子熒光光譜儀。配置有高效紫外光(UV)介面;聯用技術色譜工作站(北京瑞利分析儀器公司)。
LC-10Atvp高效液相色譜泵(Shimadzu.Japan);
CLC-ODS柱:150×6 mm i.d,10μm填料(Shim-pack,Japan)。
儀器工作條件以50%甲醇/水作流動相,含10mMTBA和0.1M NaCI,流速為1.2mL/min,進樣體積20μL。
高強度Hg空心陰極燈的燈電流為40 mA;負高壓280V;氬氣流速200 mL/min。四種汞化合物無機汞(MC)、甲基汞(MMC)、乙基汞(EMC)、苯基汞(PMC),在15min內實現了很好分離,色譜分離如圖10所示。
圖10 高液液相色譜-原子熒光光譜聯用技術三種Hg化合物的分離色譜圖
圖10 高液液相色譜-原子熒光光譜聯用技術三種Hg化合物的分離色譜圖
5.2.2 工作曲線及檢出限
根據不同形態的汞化合物其靈敏度不同,在不同的線性範圍內對無機汞和兩種有機汞化合物作了工作曲線。三種化合物均成良好的線性關係(見表8),與高效液相色譜紫外檢測器聯用相比,兩種有機汞化合物的靈敏度提高了1000倍。
表8 汞化合物的校準曲線及其檢出限
汞化合物 校準曲線 相關係數 線性範圍(ng)檢出限(ng)
MC Y=3197X+392.6 0.9985 0.4~100 0.09
MMC Y=3972.2X+2129.9 0.9996 0.4~100 0.20
EMC Y=5022.4X-4338.4 0.9987 0.4~100 0.60