單值函數
單值函數
若對定義域每一個自變數x,其對應的函數值f(x)是唯一的,則稱f(x)是單值函數。
三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。也可以等價地用與單位圓有關的各種線段的長度來定義。三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。在數學分析中,三角函數也被定義為無窮級數或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是複數值。
常見的三角函數包括正弦函數、餘弦函數和正切函數。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函數、正割函數、餘割函數、正矢函數、余矢函數、半正矢函數、半余矢函數等其他的三角函數。不同的三角函數之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。
在數學中,雙曲函數是一類與常見的三角函數(也叫圓函數)類似的函數。最基本的雙曲函數是雙曲正弦函數sinh和雙曲餘弦函數cosh,從它們可以導出雙曲正切函數tanh等,其推導也類似於三角函數的推導。雙曲函數的反函數稱為反雙曲函數。
雙曲函數的定義域是實數,其自變數的值叫做雙曲角。雙曲函數出現於某些重要的線性微分方程的解中,譬如說定義懸鏈線和拉普拉斯方程。
設X是一個非空數集,Y是非空數集,f是個對應法則,若對X中的每個x,按對應法則f,使Y中至少存在一個元素y與之對應,就稱對應法則f是X上的一個多值函數,記作。
這兩個定義的區別可抓關鍵詞的變化,“唯一的”變為“至少一個”。單值函數是多值函數的特例。