共找到14條詞條名為複變函數的結果 展開
複變函數
李漢龍,繆淑賢編著書籍
以複數作為自變數和因變數的函數就叫做複變函數,而與之相關的理論就是復 變 函 數 論。解析函數是複變函數中一類具有解析性質的函數,複變函數論主要就研究複數域上的解析函數,因此通常也稱複變函數論為解析函數論。
• 書名複變函數
• 書號978-7-118-07140-5
• 作者李漢龍,繆淑賢
• 出版時間2011年1月
• 譯者
• 版次1版1次
• 開本16
• 裝幀
• 出版基金
• 頁數269
• 字數379
• 中圖分類O174.5
• 叢書名普通高等院校“十二五”規劃教材
• 定價28.00
本書是作者在大學多年的教學實踐中編寫的。其內容包括複數與複變函數、解析函數、複變函數的積分、級數、留數定理及其應用、共形映射、數學軟體在複變函數中的應用和複變函數發展史八章。前七章配備了較多的例題和習題。書末附有自測題和習題答案.
本書既注意引導讀者用複數的方法處理問題,又隨時指出複數和實數中許多概念的異同點;在結構上既注意了它的完整性和系統性,又注意了它的應用性;同時加入了數學軟體在複變函數中的應用和複變函數發展的歷史材料。本書可作為理工科院校本科各專業複變函數課程的教材或參考書,也可以作為科研人員的
複變函數
第1章 複數與複變函數……………………1
1.1 複數及其代數運算……………………1
1.1.1 複數的概念……………………1
1.1.2 複數的代數運算……………………1
1.2 複數的幾何表示……………………2
1.2.1 複平面……………………2
1.2.2 復球面……………………8
1.3 複數的乘冪與方根……………………9
1.3.1 乘積與商……………………9
1.3.2 乘冪與方根……………………11
1.4 區域……………………13
1.4.1 區域……………………13
1.4.2 單連通區域與多連通區域……………………15
1.5 複變函數……………………16
1.5.1 複變函數的定義……………………16
1.5.2 複變函數的幾何意義……………………16
1.6 複變函數的極限與連續性……………………19
1.6.1 複變函數的極限……………………19
1.6.2 複變函數的連續性……………………21
小結……………………22
習題1 ……………………24
第2章 解析函數……………………28
2.1 複變函數的導數……………………28
2.1.1 導數的定義……………………28
2.1.2 可導與連續的關係……………………29
2.1.3 微分的概念……………………29
2.2 解析函數……………………30
2.2.1 解析函數的概念及其簡單性質……………………30
2.2.2 函數解析的充要條件……………………32
2.3 解析函數與調和函數的關係……………………37
2.4 初等函數……………………40
2.4.1 初等單值解析函數……………………41
2.4.2 初等多值函數……………………44
小結……………………49
習題2 ……………………52
第3章 複變函數的積分 ……………………55
3.1 複變函數積分的概念……………………55
3.1.1 有向曲線……………………55
3.1.2 複變函數積分的定義……………………56
3.1.3 積分存在條件……………………56
3.1.4 積分的計算……………………57
3.1.5 複變函數積分的基本性質……………………59
3.2 柯西—古薩(Cauchy-Goursat)基本定理……………………60
3.2.1 柯西—古薩基本定理……………………60
3.2.2 原函數與不定積分……………………62
3.3 複合閉路定理……………………65
3.4 柯西積分公式……………………67
3.5 高階導數公式……………………71
小結……………………75
習題3 ……………………78
第4章 級數……………………81
4.1 複數項級數……………………81
4.1.1 數列的極限……………………81
4.1.2 複數項級數……………………82
4.1.3 絕對收斂與條件收斂……………………84
4.2 冪級數……………………85
4.2.1 冪級數概念……………………85
4.2.2 冪級數的斂散性……………………86
4.2.3 冪級數的運算和性質……………………90
4.3 泰勒級數……………………91
4.3.1 泰勒定理……………………91
4.3.2 將函數展開成泰勒級數的方法……………………93
4.4 洛朗級數……………………96
4.4.1 雙邊冪級數……………………97
4.4.2 洛朗定理……………………98
4.4.3 將函數展開成洛朗級數的方法……………………99
小結……………………102
習題4……………………105
第5章 留數定理及其應用……………………108
5.1 孤立奇點……………………108
5.1.1 孤立奇點的概念……………………108
5.1.2 各類孤立奇點的判別方法……………………108
5.1.3 函數的零點與極點的關係……………………111
5.1.4 無窮遠點∞是函數的孤立奇點的情形……………………113
5.2 留數定理……………………114
5.2.1 留數的定義及留數定理……………………114
5.2.2 留數的計算方法……………………115
5.2.3 函數在無窮遠點的留數……………………119
5.3 留數定理的應用……………………122
5.3.1 ∫2π0R(cosθ,sinθ)dθ型積分……………………122
5.3.2 ∫∞-∞R(x)dx型積分……………………124
5.3.3 ∫∞-∞R(x)eaixdx(a>0)型積分……………………126
5.4 對數留數與輻角原理……………………129
5.4.1 對數留數……………………129
5.4.2 輻角原理……………………130
5.4.3 儒歇(Rouche)定理……………………131
5.4.4 單葉函數的一個性質……………………132
小結……………………133
習題5……………………136
第6章 共形映射……………………139
6.1 共形映射的概念……………………139
6.1.1 解析函數導數的幾何意義……………………139
6.1.2 共形映射的定義及性質……………………139
6.2 幾種簡單的映射……………………142
6.2.1 平移變換……………………142
6.2.2 旋轉與伸縮變換……………………143
6.2.3 倒數變換……………………143
6.3 分式線性映射……………………145
6.3.1 分式線性映射的性質……………………145
6.3.2 幾個典型的分式線性映射……………………148
6.4 初等函數的映射……………………155
6.4.1 冪函數與根式函數所構成的映射……………………155
6.4.2 指數函數與對數函數所構成的映射……………………158
6.4.3 儒可夫斯基函數所構成的映射……………………161
6.5 共形映射的兩個一般性定理……………………165
6.6 施瓦茨—克里斯托費爾映射……………………166
6.7 共形映射在靜電學、熱力學及流體力學中的應用……………………172
小結……………………179
習題6……………………180
第7章 數學軟體在複變函數中的應用……………………183
7.1 Matlab應用基礎……………………183
7.1.1 Matlab編程基礎……………………183
7.2 Matlab在複變函數中的應用……………………185
7.2.1 複數和復矩陣的生成……………………186
7.2.2 複數的運算……………………187
7.2.3 複變函數的極限……………………189
7.2.4 複變函數的求導……………………190
7.2.5 複變函數的定積分……………………191
7.2.6 複變函數的級數……………………193
7.2.7 留數……………………196
7.2.8 拉普拉斯變換及其反變換……………………199
7.2.9 傅里葉變換及其反變換……………………203
7.2.10 複變函數的圖像……………………204
小結……………………207
習題7……………………207
第8章 複變函數發展史……………………210
8.1 了解數學史的重要意義……………………210
8.2 複變函數發展史簡述……………………210
8.2.1 複變函數論的發展簡況……………………211
8.2.2 複變函數論的內容……………………212
8.3 複變函數主要內容發展歷程……………………213
8.3.1 複數……………………213
8.3.2 複變函數……………………215
8.3.3 解析函數與復積分……………………216
8.3.4 解析函數的級數……………………220
8.3.5 留數……………………221
8.3.6 共形映射……………………222
8.4 複變函數發展歷程中相關數學家介紹……………………223
8.4.1 歐拉(Euler,L.1707-1783) ……………………223
8.4.2 高斯(Gauss,C.F.1777—1855)……………………224
8.4.3 柯西(Cauchy.A.L.1789—1857)……………………225
8.4.4 魏爾斯特拉斯(Weierstrass.K.T.W.1815—1897) ……………………228
8.4.5 黎曼(Riemann,F.F.B.,1826—1866) ……………………229
小結……………………234
附錄……………………235
附錄Ⅰ 區域映射圖……………………235
附錄Ⅱ 複變函數自測試題……………………242
習題參考答案與提示……………………254
參考文獻……………………261