共找到3條詞條名為有氧呼吸的結果 展開
- 高等動、植物進行呼吸作用
- 需氧呼吸
- 程小溪/程小涵演唱歌曲
有氧呼吸
高等動、植物進行呼吸作用
有氧呼吸是指細胞在氧的參與下,通過多種酶的催化作用,把有機物徹底氧化分解(通常以分解葡萄糖為主),產生二氧化碳和水,釋放能量,合成大量ATP的過程。
有氧呼吸是高等動、植物進行呼吸作用的主要形式,通常所說的呼吸作用就是指有氧呼吸。有氧呼吸在細胞質基質和線粒體中進行,且線粒體是細胞進行有氧呼吸的主要場所。生物化學將有氧呼吸主要分為兩個階段。第一階段,是在細胞質里進行的糖酵解:即在無氧條件下把葡萄糖轉化為丙酮酸,併產生少量ATP和NADH。第二階段,是在線粒體進行的檸檬酸循環:即在有氧條件下把丙酮酸轉化為二氧化碳和水,併產生少量的GTP和大量的NADH與FADH2。最終,糖酵解和檸檬酸循環所產生的NADH和FADH2進入氧化磷酸化過程,代謝產生大量ATP。至此完成有氧呼吸的全過程。
此處以最常見最廣泛的葡萄糖分解為例。
有氧呼吸過程示意
反應式:CHO酶→2CHO(丙酮酸)+4[H]+少量能量 (2ATP)(4[H]為4NADH)。
線粒體結構示意
反應式:2CHO(丙酮酸)+6HO酶→20[H]+6CO+少量能量 (2ATP)(20[H]為16NADH和NADPH)。
在線粒體的內膜上,前兩階段脫下的共24個[H]與從外界吸收或葉綠體光合作用產生的6個O2結合成水;在此過程中釋放大量的能量,其中一部分能量用於合成ATP,產生大量的能量。這一階段需要氧的參與,是在線粒體內膜上進行的。
反應式:24[H]+6O酶→12HO+大量能量(34ATP) (24[H]為10*2NADH和2*FADH2)。
1NADH生成2.5ATP(舊為3ATP),1FADH2生成1.5ATP(舊為2ATP)。
有氧呼吸圖解
有氧呼吸主要在線粒體內,而無氧呼吸主要在細胞基質內。
有氧呼吸需要氧氣分子參加,而無氧呼吸不需要氧氣分子參加。
有氧呼吸分解產物是能量(ATP)和二氧化碳,水,而無氧呼吸分解產物主要是酒精或乳酸以及少量能量。
有氧呼吸釋放能量較多,無氧呼吸釋放能量較少。
CHO+6HO+6O→6CO+12HO+大量能量(最多38個ATP,一般是29-30個ATP)
過程中的能量變化
在有氧呼吸過程中,葡萄糖徹底氧化分解,1mol的葡萄糖在徹底氧分解以後,共釋放出2870kJ的能量,其中有1161kJ的能量儲存在ATP中,1709kJ以熱能形式散失。利用率為40.45%
• 第一階段:糖酵解(反應場所:細胞質基質)
①:1 葡萄糖+2ADP+2Pi +2[NAD] → 2丙酮酸+2[NADH+H+]+2ATP
• 第二階段:檸檬酸循環(三羧酸循環)(反應場所:線粒體基質)
②:2丙酮酸+2[NAD]+2輔酶A → 2乙醯CoA+2[NADH+H+]+2CO
③:2乙醯CoA+6H2O+6[NAD]+2[FAD]+2ADP+2Pi →2 輔酶A+6[NADH+H+]+2FADH2+2ATP+4CO
• 第三階段:氧化磷酸化(電子傳遞鏈)(反應場所:線粒體內膜)
④:28ADP+28Pi+10[NADH+H+]+2FADH2+6O2 → 28ATP+12H2O+10[NAD]+2[FAD]
細胞中的有氧呼吸和無氧呼吸示意圖
1.以上過程的方程式係數均以1分子的葡萄糖為原料。
2.關於ATP的生成數量。
1NADH → 2.5 ATP(舊數據是3ATP);
1FADH2 → 1.5ATP(舊數據是2ATP)。
發生在細胞溶膠中的糖酵解和線粒體基質中的檸檬酸循環通過底物水平磷酸化共產生4個ATP。
糖酵解、乙醯CoA的形成和檸檬酸循環共產生2個FADH2 和10個NADH,所以換算為28個ATP。
總ATP為:28+4=32。
由於糖酵解發生於線粒體外,NADH必須進入線粒體內才能被氧化。有的細胞要利用相當於2個ATP的能量把NADH運入線粒體內,這樣,所產生的ATP總數就是30而不是32了。但是許多細胞利用的是不需要消耗能量的辦法將NADH運入線粒體內,所以產生的ATP總數仍然為32。所以一分子葡萄糖產生的ATP總數一般為30-32。
分解有機物,釋放能量。
1mol葡萄糖在體內徹底氧化分解所釋放的能量是2870KJ,
其中1161KJ的能量轉移到ATP中,
合成38molATP(最多38molATP,一般是29mol-30molATP),能量的轉移率是40%
有氧呼吸 - 介紹指物質在細胞內的氧化分解,具體表現為氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又稱細胞呼吸。其根本意義在於給機體提供可利用的能量。
在第1階段中,各種能源物質循不同的分解代謝途徑轉變成乙醯輔酶A。
在第2階段中,乙醯輔酶A(乙醯CoA)的二碳乙醯基,通過三羧酸循環轉變為CO和氫原子。
在第3階段中,氫原子進入電子傳遞鏈(呼吸鏈),最後傳遞給氧,與之生成水;同時通過電子傳遞過程伴隨發生的氧化磷酸化作用產生ATP分子。
生物體主要通過脫羧反應產生CO,即代謝物先轉變成含有羧基(-COOH)的羧酸,然後在專一的脫羧酶催化下,從羧基中脫去CO。細胞中的氧化反應可以“脫氫”、“加氧”或“失電子”等多種方式進行,而以脫氫方式最為普遍,也最重要。
在細胞呼吸的第1階段中包括一些脫羧和氧化反應,但在三羧酸循環中更為集中。三羧酸循環是在需氧生物中普遍存在的環狀反應序列。循環由連續的酶促反應組成,反應中間物質都是含有3個羧基的三羧酸或含有2個羧基的二羧酸,故稱三羧酸循環。因檸檬酸是環上物質,又稱檸檬酸循環。也可用發現者的名字命名為克雷布斯循環。在循環開始時,一個乙醯基以乙醯-CoA的形式,與一分子四碳化合物草醯乙酸縮合成六碳三羧基化合物檸檬酸。檸檬酸然後轉變成另一個六碳三羧酸異檸檬酸。異檸檬酸脫氫並失去CO,生成五碳二羧酸α-酮戊二酸。後者再脫去1個CO,產生四碳二羧酸琥珀酸。最後琥珀酸經過三步反應,脫去2對氫又轉變成草醯乙酸。再生的草醯乙酸可與另一分子的乙醯CoA反應,開始另一次循環。循環每運行一周,消耗一分子乙醯基(二碳),產生2分子CO和4對氫。草醯乙酸參加了循環反應,但沒有凈消耗。如果沒有其他反應消除草醯乙酸,理論上一分子草醯乙酸可以引起無限的乙醯基進行氧化。環上的羧酸化合物都有催化作用,只要小量即可推動循環。凡能轉變成乙醯CoA或三羧酸循環上任何一種催化劑的物質,都能參加這循環而被氧化。所以此循環是各種物質氧化的共同機制,也是各種物質代謝相互聯繫的機制。三羧酸循環必須在有氧的情況下進行。
有氧呼吸圖
NAD++2H(2H++2e)NADH+H+NADP++2H(2H++2e)NADPH+H+
黃素蛋白類是以黃素腺嘌呤二核苷酸(FAD)或黃素單核苷酸(FMN)為輔基的脫氫酶,其輔基中含核黃素(維生素B2)。NADH脫氫酶就是一種黃素蛋白,可以將NADH的氫原子加到輔基FMN上,在NADH呼吸鏈中起遞氫體作用。琥珀酸脫氫酶也是一種黃素蛋白,可以將底物琥珀酸的1對氫原子直接加到輔基FAD上,使其氧化生成延胡索酸。FADH2繼續將H傳遞給FADH2呼吸鏈中的下一個成員,所以FADH2呼吸鏈比NADH呼吸鏈短,伴隨著呼吸鏈產生的ATP也略少。
鐵硫蛋白類的活性部位含硫及非卟啉鐵,故稱鐵硫中心。其作用是通過鐵的變價傳遞電子:Fe3++eFe2+。這類蛋白質在線粒體內膜上,常和黃素脫氫酶或細胞色素結合成複合物。在從NADH到氧的呼吸鏈中,有多個不同的鐵硫中心,有的在NADH脫氫酶中,有的和細胞色素b及c1有關。輔酶Q是一種脂溶性醌類化合物,因廣泛存在於生物界故又名泛醌。其分子中的苯醌結構能可逆地加氫還原成對苯二酚衍生物,在呼吸鏈中起中間傳遞體的作用。細胞色素是一類以鐵卟啉(與血紅素的結構類似)為輔基的紅色或棕色蛋白質,在呼吸鏈中依靠鐵的化合價變化而傳遞電子:Fe3++eFe2+。當今發現的細胞色素有 b、c、c1、aa3等多種。這些細胞色素的蛋白質結構、輔基結構及輔基與蛋白質部分的連接方式均有差異。在典型的呼吸鏈中,其順序是b→c1→c→aa3→O2。如今當今,還不能把a和a3分開,而且只有aa3能直接被分子氧氧化,故將a和a3寫在一起並稱之為細胞色素氧化酶。生物界各種呼吸鏈的差異主要在於組分不同,或缺少某些中間傳遞體,或中間傳遞體的成分不同。如在分枝桿菌中用維生素K代替輔酶Q;又如許多細菌沒有完整的細胞色素系統。呼吸鏈的組成雖然有許多差異,但其傳遞電子的順序卻基本一致。生物進化越高級,呼吸鏈就越完善。與呼吸鏈偶聯的ATP生成作用叫做氧化磷酸化。NADH呼吸鏈每傳遞1對氫原子到氧,產生3個ATP分子。FADH2呼吸鏈則只生成2個ATP分子。
第一,有氧呼吸提供植物生命活動所需要的大部分能量。植物的生長、發育,細胞的分裂和伸長,有機物的運輸與合成,礦質營養的吸收和運輸等過程都需要能量,這些能量主要是通過植物的呼吸作用提供的。植物的呼吸作用釋放能量的速度較慢,而且是逐步釋放,適於細胞利用。釋放的能量,一部分轉變為熱能散失掉,一部分以三磷酸腺苷的形式暫時貯存。
第二,有氧呼吸提供了合成新物質的原料。呼吸過程產生的一系列中間產物,可以作為植物體內合成各種重要化合物的原料。呼吸作用是植物體內各種有機物相互轉化的樞紐。
第三,有氧呼吸還能促進傷口癒合,增強植物的抗病能力。