胸腺核酸

胸腺核酸

胸腺核酸為脫氧核糖核酸的舊稱,也是核糖核酸的舊稱——酵母核酸的對應詞。因為最初常用小牛胸腺來抽提和分離DNA,所以有胸腺核酸之名。小牛胸腺的DNA已作為市售的DNA而被廣泛利用。

概述


脫氧核糖核酸(英語:Deoxyribonucleic acid,縮寫為DNA)又稱去氧核糖核酸,是一種分子,可組成遺傳指令,以引導生物發育與生命機能運作。主要功能是長期性的資訊儲存,可比喻為“藍圖”或“食譜”。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與RNA所需。帶有遺傳訊息的DNA片段稱為基因,其他的DNA序列,有些直接以自身構造發揮作用,有些則參與調控遺傳訊息的表現。
DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸分子藉由酯鍵相連,組成其長鏈骨架。每個糖分子都與四種鹼基里的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如rRNA、snRNA與siRNA。
在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的類核里。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。

分離


胸腺核酸
胸腺核酸
最早分離出DNA的弗雷德里希·米歇爾是一名瑞士醫生,他在1869年,從廢棄繃帶里所殘留的膿液中,發現一些只有顯微鏡可觀察的物質。由於這些物質位於細胞核中,因此米歇爾稱之為“核素”(nuclein)。到了1919年,菲巴斯·利文進一步辨識出組成DNA的鹼基、糖類以及磷酸核苷酸單元,他認為DNA可能是許多核苷酸經由磷酸基團的聯結,而串聯在一起。不過他所提出概念中,DNA長鏈較短,且其中的鹼基是以固定順序重複排列。1937年,威廉·阿斯特伯里完成了第一張X光繞射圖,闡明了DNA結構的規律性。
1928年,弗雷德里克·格里菲斯從格里菲斯實驗中發現,平滑型的肺炎球菌,能轉變成為粗糙型的同種細菌,方法是將已死的平滑型與粗糙型活體混合在一起。這種現象稱為“轉型”。但造成此現象的因子,也就是DNA,是直到1943年,才由奧斯瓦爾德·埃弗里等人所辨識出來。1953年,阿弗雷德·赫希與瑪莎·蔡斯確認了DNA的遺傳功能,他們在赫希-蔡斯實驗中發現,DNA是T2噬菌體的遺傳物質。
劍橋大學里一面紀念克里克與DNA結構的彩繪窗。到了1953年,當時在卡文迪許實驗室的詹姆斯·沃森與佛朗西斯·克里克,依據倫敦國王學院羅莎琳·富蘭克林所拍攝的X光繞射圖及相關資料,提出了最早的DNA結構精確模型,並發表於《自然》期刊。五篇關於此模型的實驗證據論文,也同時以同一主題發表於《自然》。其中包括富蘭克林與雷蒙·葛斯林的論文,此文所附帶的X光繞射圖,是沃森與克里克闡明DNA結構的關鍵證據。此外莫里斯·威爾金斯團隊也是同期論文的發表者之一。富蘭克林與葛斯林隨後又提出了A型與B型DNA雙螺旋結構之間的差異。1962年,沃森、克里克以及威爾金斯共同獲得了諾貝爾生理學或醫學獎
克里克在1957年的一場演說中,提出了分子生物學中心法則,預測了DNA、RNA以及蛋白質之間的關係,並闡述了“轉接子假說”(即後來的tRNA)。1958年,馬修·梅瑟生與富蘭克林·史達在梅瑟生-史達實驗中,確認了DNA的複製機制。後來克里克團隊的研究顯示,遺傳密碼是由三個鹼基以不重複的方式所組成,稱為密碼子。這些密碼子所構成的遺傳密碼,最後是由哈爾·葛賓·科拉納、羅伯特·W·霍利以及馬歇爾·沃倫·尼倫伯格解出。為了測出所有人類的DNA序列,人類基因組計劃於1990年代展開。到了2001年,多國合作的國際團隊與私人企業塞雷拉基因組公司,分別將人類基因組序列草圖發表於《自然》與《科學》兩份期刊。

分子結構


DNA的結構目前一般劃分為一級結構二級結構、三級結構、四級結構四個階段。
1. DNA的一級結構是指構成核酸的四種基本組成單位——脫氧核糖核苷酸(核苷酸),通過3',5'-磷酸二酯鍵彼此連接起來的線形多聚體,以及起基本單位-脫氧核糖核苷酸的排列順序。
每一種脫氧核糖核苷酸由三個部分所組成:一分子含氮鹼基+一分子五碳糖(脫氧核糖)+一分子磷酸根。核酸的含氮鹼基又可分為四類:腺嘌呤(adenine,縮寫為A),胸腺嘧啶(thymine,縮寫為T),胞嘧啶(cytosine,縮寫為C)和鳥嘌呤(guanine,縮寫為G)。DNA的四種含氮鹼基組成具有物種特異性。即四種含氮鹽基的比例在同物種不同個體間是一致的,但再不同物種間則有差異。 DNA的四種含氮鹼基比例具有奇特的規律性,每一種生物體DNA中 A=T C=G 查哥夫(Chargaff)法則。
2. DNA的二級結構是指兩條脫氧多核苷酸鏈反向平行盤繞所形成的雙螺旋結構。DNA的二級結構分為兩大類:一類是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一類是左手雙螺旋,如Z-DNA。詹姆斯·沃森與佛朗西斯·克里克所發現的雙螺旋,是稱為B型的水結合型DNA,在細胞中最為常見(如圖)。也有的DNA為單鏈,一般見於原核生物,如大腸桿菌噬菌體φX174、G4、M13等。有的DNA為環形,有的DNA為線形。
3. DNA的三級結構是指DNA中單鏈與雙鏈、雙鏈之間的相互作用形成的三鏈或四鏈結構。如H-DNA或R-環等三級結構。
4. 核酸以反式作用存在(如核糖體、剪接體),這客看作是核算的四級水平的結構。
5. 此外,DNA的拓撲結構也是DNA存在的一種形式。DNA的拓撲結構是指在DNA雙螺旋的基礎上,進一步扭曲所形成的特定空間結構。超螺旋結構是拓撲結構的主要形式,塔可以分為正超螺旋和負超螺旋兩類,在相應條件下,它們可以相互轉變。
在雙螺旋的DNA中,分子鏈是由互補的核苷酸配對組成的,兩條鏈依靠氫鍵結合在一起。由於氫鍵鍵數的限制,DNA的鹼基排列配對方式只能是A對T或C對G。因此,一條鏈的鹼基序列就可以決定了另一條的鹼基序列,因為每一條鏈的鹼基對和另一條鏈的鹼基對都必須是互補的。在DNA複製時也是採用這種互補配對的原則進行的:當DNA雙螺旋被展開時,每一條鏈都用作一個模板,通過互補的原則補齊另外的一條鏈,即半保留複製
分子鏈的開頭部分稱為3'端而結尾部分稱為5'端,這些數字錶示脫氧核糖中的碳原子編號。