誘變育種

誘變育種

關鍵詞:清華大學無錫應用技術研究院生物育種中心、ARTP誘變系統、常壓室溫等離子體誘變、育種 誘變育種(mutation breeding; selection by mutation)在人為的條件下,利用物理、化學等因素,誘發生物體產生突變,從中選擇,培育成動植物和微生物的新品種。誘變育種存在的主要問題是有益突變頻率仍然較低,變異的方向和性質尚難控制。

方法


物理、化學誘變的方法及其機理如下述。

物理誘變

應用較多的是輻射誘變,即用α射線β射線γ射線、Χ射線、中子和其他粒子、紫外輻射以及微波輻射等物理因素誘發變異。當通過輻射將能量傳遞到生物體內時,生物體內各種分子便產生電離和激發,接著產生許多化學性質十分活躍的自由原子或自由基
。它們繼續相互反應,並與其周圍物質特別是大分子核酸和蛋白質反應,引起分子結構的改變。由此又影響到細胞內的一些生化過程,如 DNA合成的中止、各種酶活性的改變等,使各部分結構進一步深刻變化,其中尤其重要的是染色體損傷。由於染色體斷裂和重接而產生的染色體結構和數目的變異即染色體突變,而DNA分子結構中鹼基的變化則造成基因突變。那些帶有染色體突變或基因突變的細胞,經過細胞世代將變異了的遺傳物質傳至性細胞或無性繁殖器官,即可產生生物體的遺傳變異
誘變處理的材料宜選用綜合性狀優良而只有個別缺點的品種、品系或雜種。由於材料的遺傳背景和對誘變因素的反應不同,出現有益突變的難易各異,因此進行誘變處理的材料要適當多樣化。由於不同科、屬、種及不同品種植物的輻射敏感性不同,其對誘變因素反應的強弱和快慢也各異。如十字花科白菜的敏感性小於禾本科水稻大麥,而水稻、大麥的敏感性又小於豆科大豆。另外,輻射敏感性的大小還同植物的倍數性、發育階段、生理狀態和不同的器官組織等有關。如二倍體植物大於多倍體植物,大粒種子大於小粒種子,幼齡植株大於老齡植株,萌動種子大於休眠種子,性細胞大於體細胞等。根據誘變因素的特點和作物對誘變因素敏感性的大小,在正確選用處理材料的基礎上,選擇適宜的誘變劑量是誘變育種取得成效的關鍵(表 1)。適宜誘變劑量是指能夠最有效地誘發作物產生有益突變的劑量,一般用半致死劑量(LD50)表示。不同誘變因素採用不同的劑量單位。Χ、γ射線線吸收劑量以拉德(rad)或戈瑞(GY)為單位,照射劑量以倫琴(R)為單位,中子用注量表示。同時要注意單位時間的照射劑量(劑量率、注量率)以及處理的時間和條件。
輻照方法分外照射和內照射兩種,前者指被照射的植物接受來自外部的γ射線源、Χ射線源或中子源等輻射源輻照,這種方法簡便安全,可進行大量處理。後者指將放射性物質(如32P、35S等)引入植物體內進行輻照,此法容易造成污染,需要防護條件,而且被吸收的劑量也難以精確測定。干種子因便於大量處理和便於運輸、貯藏,用於輻照最為簡便。

化學誘變

化學誘變除能引起基因突變外,還具有和輻射相類似的生物學效應,如引起染色體斷裂等,常用於處理遲發突變,並對某特定的基因或核酸有選擇性作用。化學誘變劑主要有:①烷化劑。這類物質含有1個或多個活躍的烷基,能轉移到電子密度較高的分子中去,置換其他分子中的氫原子而使鹼基改變。常用的有甲基磺酸乙酯(EMS)、乙烯亞胺(EI)、亞硝基乙基脲烷(NEU)、亞硝基甲基脲烷(NMU)、硫酸二乙酯(DES)等。②核酸鹼基類似物。為一類與DNA鹼基相類似的化合物。滲入DNA后,可使DNA複製發生配對上的錯誤。常用的有5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR)等。③抗生素。如重氮絲氨酸、絲裂毒素C等,具有破壞DNA和核酸的能力,從而可造成染色體斷裂。
化學誘變主要用於處理種子,其次為處理植株。種子處理時,先在水中浸泡一定時間,或以干種子直接浸在一定濃度的誘變劑溶液中處理一定時間,水洗后立即播種,或先將種子乾燥、貯藏,以後播種。植株處理時,簡單的方法是在莖稈上切一淺口,用脫脂棉把誘變劑溶液引入植物體,也可對需要處理的器官進行注射或塗抹。應用的化學誘變劑濃度要適當(表 2)。處理時間以使受處理的器官、組織完成水合作用和能被誘變劑所浸透為度。化學誘變劑大都是潛在的致癌物質,使用時必須謹慎。

問題處理


誘變育種存在的主要問題及誘變後代的處理

誘變育種存在的主要問題

誘變育種存在的主要問題是有益突變頻率仍然較低,變異的方向和性質尚難控制。因此提高誘變效率,迅速鑒定和篩選突變體以及探索定向誘變的途徑,是當前研究的重要課題。

誘變後代的處理

經誘變處理產生的誘變一代,以M1表示。由於受射線等誘變因素的抑制和損傷,M1的發芽率、出苗率、成株率、結實率一般較低,發育延遲,植株矮化或畸形,並出現嵌合體。但這些變化一般不能遺傳給後代。誘變引起的遺傳變異多數為隱性,因此M1一般不進行選擇,而以單株、單穗或以處理為單位收穫。誘變二代(M2)是變異最大的世代,也是選擇的關鍵時期,可根據育種目標及性狀遺傳特點選擇優良單株(穗)。多數變異是不利的,但也能出現早熟、桿矮、抗病、抗逆、品質優良等有益變異,變異頻率約為0.1~0.2%。誘變三代(M3)以後,隨著世代的增加,性狀分離減少,有些性狀一經獲得即可迅速穩定。經過幾個世代的選擇就能獲得穩定的優良突變系,再進一步試驗育成新品種。具有某些突出性狀的突變系,還可用作雜交親本。

太空育種(誘發育種)的原理

高真空,宇宙高能離子輻射,宇宙磁場、高潔凈)使種子發生基因突變后,返回地面進行種植,希望基因突變可以帶來優良性狀(高產,抗病,早熟,營養物質比例提高等),但大多數情況下,產生不利變異的可能性高於優良性狀(如倒伏,無葉綠素,雄蕊發育不良等)