初等數論
數學分支
初等數論是研究數的規律,特別是整數性質的數學分支。它是數論的一個最古老的分支。它以算術方法為主要研究方法,主要內容有整數的整除理論、同餘理論、連分數理論和某些特殊不定方程。換言之,初等數論就是用初等、樸素的方法去研究數論。另外還有解析數論(用解析的方法研究數論)、代數數論(用代數結構的方法研究數論)。
古希臘
古希臘畢達哥拉斯是初等數論的先驅。他與他的學派致力於一些特殊整數(如親和數、完全數、多邊形數)及特殊不定方程的研究。公元前4世紀,歐幾里德的《幾何原本》通過102個命題,初步建立了整數的整除理論。他關於“素數有無窮多個”的證明,被認為是數學證明的典範。
初等數論已經有2000年的歷史,公元前300年,歐幾里得發現了素數是數論的基石,他自己證明了有無窮多個素數。公元前250年古希臘數學家埃拉托塞尼發明了一種篩法。2000年來,數論學的一個最重要的任務,就是尋找一個可以表示所有素數的統一公式,或者稱為素數普遍公式,為此,人類耗費了巨大的心血。後來發現埃拉托塞尼篩法可以轉換成為一個素數產生的公式:
公元前250年同樣是古希臘的數學家埃拉托塞尼提出一種篩法:
(一)“要得到不大於某個自然數n(不等於0)的所有素數,只要在2至n中將不大於的素數的倍數全部劃去即可”。
(二)將上面的內容等價轉換:“如果n是合數(非0自然數),則它有一個因子d滿足
”。
(三)再從(二)得到等價的逆否命題:“若自然數n不能被不大於的任何素數整除,則n是一個素數”。
(四)上述的(三)可以用符號如此表達:
其中
順序地表示素數2,3,5,...。對以上的數(即為N被相除所得之餘數),有(餘數不為0)。
即N不能是2m,3m,5m,...,pm形。若是,則N是一個素數。
(五)可以把上述的式(1)用同餘式組表示:
例如,29不能夠被以下的任何素數,如2,3,5整除,。
,所以29是一個素數。
由於(2)的模
兩兩互素,根據孫子定理(中國剩餘定理)知,(2)式在的意義上有唯一解。
例如k=1時,解得。求得了(3,3)區間的全部素數。
例如:當k=2時,,解得;,解得。如此,求得了(5,5 )區間的全部素數。
仿此下去可以求得任意給定數以內的全部素數。
(六)用程序方法求素數。“若一個自然數n,判斷n/k是否整除,先判斷其能否整除2,若不能再判斷其能否整除3,依次向下判斷,當時,判斷結束。”如果所有判斷都不能整除,則自然數N為素數。
公元3世紀,丟番圖研究了若干不定方程,並分別設計巧妙解法,故後人稱不定方程為丟番圖方程。17世紀以來,費馬、歐拉、高斯等人的工作大大豐富和發展了初等數論的內容。
古代中國
中國古代對初等數論的研究有著光輝的成就,《周髀算經》、《孫子算經》、《張邱建算經》、《數書九章》等古文獻上都有記載。孫子定理比歐洲早500年,西方常稱此定理為中國剩餘定理,秦九韶的大衍求一術也馳名世界。初等數論不僅是研究純數學的基礎,也是許多學科的重要工具。它的應用是多方面的,如計算機科學、組合數學、密碼學、資訊理論等。如公開密鑰體制的提出是數論在密碼學中的重要應用。
初等數論有以下幾部分內容:
1.整除理論。引入整除、因數、倍數、質數與合數等基本概念。這一理論的主要成果有:唯一分解定理、裴蜀定理、歐幾里德的輾轉相除法、算術基本定理、素數個數無限證明。
3.連分數理論。引入了連分數概念和演演算法等等。特別是研究了整數平方根的連分數展開。主要成果:循環連分數展開、最佳逼近問題、佩爾方程求解。
4.不定方程。主要研究了低次代數曲線對應的不定方程,比如勾股方程的商高定理、佩爾方程的連分數求解。也包括了四次費馬方程的求解問題等等。
5.數論函數。比如歐拉函數、莫比烏斯變換等等。
6.高斯函數。
初等數論是一個理論層次
第一個層次叫做數學概念,是反映對象的本質屬性的思維形式。人類在認識過程中,從感性認識上升到理性認識,把所感知的事物的共同本質特點抽象出來,加以概括,就成為概念。表達概念的語言形式是詞或片語。科學概念,特別是數學概念要求更加嚴格,至少必須具備三個條件:專一性,精確性,可以檢驗。例如:”孿生素數“就是一個數學概念。
第二個層次叫做數學命題,數學命題是對一系列數學概念之間的關係作出判斷的句子。一個命題要麼真,要麼不真(這由邏輯中的排中律保證)。真命題包含定理,引理,推論,事實等。命題既可以是存在性命題(表述為”存在......."),也可以是全稱命題(表述為“對於一切.....")。
第三個層次叫做數學理論,把方法,公式,公理,定理,原理,組合成為一個體系叫做數學理論。例如“初等數論”,由公理(例如等量公理),定理(例如費馬小定理),原理(例如抽屜原理,一一對應原理),公式等組成。
在數學證明時,全稱命題常常不能通過枚舉法來判斷真偽,這是因為數學有時面對的是無窮多個對象,永遠不可能一一枚舉出每一種情況。不完全歸納法在數學中是不可行的,數學只承認演繹邏輯(數學歸納法,超限歸納法等均屬於演繹邏輯)。
費馬
費馬在古典數論領域中的成果很多,比如提出了不定方程無解證明的無窮遞降法,引入了費馬數等等。
費馬
費馬小定理:,其中p是一個素數,a是正整數。
事實上它是歐拉定理的一個特殊情況,Euler定理是說:,a,n都是正整數且互素,φ(n)是Euler函數,表示和n互素的小於n的正整數的個數。
歐拉
歐拉
高斯
高斯
《算術研究》提出了同餘理論,討論了平方剩餘問題,發現了二次互反律。高斯提出了著名的素數定理(當時是猜想),研究了指標和估計問題——表示論的雛形。
高等學校數學教材初等數論(第二版)定價:¥35.00
出 版 社:北京大學出版社
出版時間:2003-1-1
版次:2
頁數:592
字數:520000
印刷時間:2011-1-1
開本:大32開
紙張:膠版紙
印次:9
I S B N:9787301060759
包裝:平裝
內容簡介
本書自1992年9月出版以來,已發行24000冊,深受教師和學生的歡迎。在第二版中,本書作者根據10年來讀者和本書編輯提出的寶貴意見,以及在教學實踐中的體會,對本書內容做了進一步修改與完善(見第二版說明),使之更適宜於教學需要。
本書是大學初等數論課教材。全書共分九章。內容包括:整除,不定方程,同餘,同餘方程,指數與原根,連分數,素數分佈的初等結果,數論函數等。書中配有較多的習題,書末附有提示與解答。?書積累了作者數十年教學與科研的經驗,遵循少而精的原則,精心選材。為便於學生理想,對重點內容多側面分析,從不同角度進行闡述。
作者簡介潘承洞,數學家,中科院院士。江蘇蘇州人。著作有《哥德巴赫猜想》(合著)、《階的估計》等。
目錄第二版說明
第一版序
符號說明
第一章整除
1自然數與整數
2整除
3帶餘數除法與輾轉相除法
4最大公約數理論
5算術基本定理(A)
6算術基本定理(B)
7符號[X],n!的分解式
8容斥原理與的計算公式
第二章不定方程(I)
1一次不定方程
第三章同餘
1同餘
2同餘類與剩餘系
3(M)的性質與Fermat-Euler定理
4Wlison定理
第四章同餘方程
1同餘方程的基本概念
2一次同餘方程
3一次同餘方程組,孫子定理
4一般同餘方程的求解
5橫為素數的二次同餘方程
6Legendre符號,Gauss二次互反律
7Jacbi符號
8模為素數的高次同餘方程
9多元同餘方程,Chevalley定理
第五章指數與原根
1指數
2原根
3指標、指?組與既約剩餘系的構造
4二項同餘方程
第六章不定方程(II)
……
第七章連分數
第八章素數分佈的初等結果
第九章數論函數
附錄一自然數
附錄二算術基本定理不成立的例子
附錄三初等數論的幾個應用
附錄四國際數學奧林匹克競賽中數論有關的題
習題的提示與解答