共找到2條詞條名為唐定中的結果 展開
- 長嶺崗鄉楊柳河村秘書
- 中國科學院遺傳發育所研究員
唐定中
中國科學院遺傳發育所研究員
唐定中,男,博士,中國科學院遺傳與發育生物學研究所研究員,博士生導師。
實驗室的研究方向為植物與病原菌的相互作用,主要研究植物抗病反應的分子機制及其信號轉導途徑。
1.植物抗病的分子機制
利用模式植物擬南芥,採用遺傳學,分子生物學以及生物化學的方法,分離和鑒定植物抗病信號通路中的重要組分,研究植物抗病的分子機理。近年來,利用擬南芥與白粉菌互作體系,我們在植物抗病機制研究中取得了許多新的進展。例如,我們發現油菜素甾醇受體BRI1的底物BSK1是免疫受體複合體成員,與病原相關分子模式(PAMPs)受體FLS2互作,調控植物的抗病反應,揭示油菜素甾醇信號與植物基礎抗性(PTI)之間的交互應答(Shi et al., 2013);發現鈣調素結合的轉錄因子SR1作為水楊酸信號通路和乙烯信號通路在轉錄水平調控的一個關鍵交叉點,精細調控植物的抗性和衰老反應(Nie et al., 2012);發現26S蛋白亞基RPN1a直接參與植物的先天免疫反應 (Yao et al., 2012);發現在植物中THO/TREX蛋白複合體對mRNA的核質運輸的調控作用,發現THO/TREX蛋白複合體的組分HPR1是基礎抗性和乙烯信號的重要調節因子(Pan et al., 2012);此外,我們還發現細胞自噬過程影響白粉病的抗性,並證實自噬過程在植物細胞凋亡的調節中起重要作用( Wang et al.,2011)。我們最近發現EDR1與MKK4/5互作,揭示MAPK信號通路精細調控植物抗病性的分子機理(Zhao et al., 2014),而EDR4通過調控EDR1的亞細胞定位來影響植物先天免疫反應(Wu et al., 2015); 我們還發現非典型胞內免疫受體與胞吐在機制上的聯繫(Zhao et al., 2015)。我們將利用已有的研究基礎,進一步解析植物抗病反應的信號轉導途徑和網路調控機制。
2. 重要作物病害的抗性機制
白葉枯和稻瘟病是水稻生產上最重要的兩種病害。儘管近10多年來對這兩種病的研究已取得了不少成果,克隆了多個白葉枯和稻瘟病的抗性基因,然而,對這些抗性基因的作用機制還很不清楚。我們利用水稻抗病品種及抗病功能缺失突變體,鑒定和克隆調控水稻白葉枯和稻瘟病抗性的基因,闡明水稻調控抗病反應的分子機制。
小麥白粉病、赤霉病和鏽病是小麥生產最主要的病害。由於小麥基因組複雜,目前對小麥病害的研究還很不夠。在小麥白粉病方面,我們將以二倍體小麥祖先種烏拉爾圖為基礎,利用小麥功能基因組學研究中的最新成果,鑒定具有廣譜和持久抗性的小麥白粉病抗性基因,為小麥抗白粉病育種中提供重要基因資源。在小麥赤霉病方面,我們通過與荷蘭Wageningen大學Theo van der Lee博士合作,建立了小麥赤霉病的研究體系,對赤黴菌轉座子突變體庫進行篩選,鑒定小麥赤黴菌致病基因,研究赤黴菌致病機理(Zhao et al., 2011; Zhao et al., 2013;Zhao et al., 2014)。同時利用建立好的赤黴菌研究體系,篩選赤霉病的抗源,用於小麥赤霉病抗性改良。在小麥鏽病方面,我們正在與南非Free State大學的Zakkie Pretorius 教授開展合作,研究小麥桿鏽病的抗性機理。
1992年武漢大學生物系學士;1995年福建農業大學碩士;1996-1997年英國John Innes Centre訪問學者;1998年福建農業大學博士。1998-1999中科院發育所博士后。1999-2006年Indiana大學博士后。2006年入選中國科學院“百人計劃”。2016年“國家傑出青年科學基金”獲得者。
Tang, D ., Zhou, J . PEPRs spice up plant immunity. EMBO Journal.2016, 35:4-5
Wu, G., Liu S., Zhao, Y., Wang, W., Kong, Z., Tang, D.ENHANCED DISEASE RESISTANCE4 associates with CLATHRIN HEAVY CHAIN2 and modulates plant immunity by regulating relocation of EDR1 inArabidopsis.Plant Cell. 2015, 27: 857–873
Zhao, T., Rui, L., Li J., Nishimura M., Vogel J., Liu, N., Liu, S., Zhao, Y., Dangl, J., Tang, D*.A truncated NLR protein, TIR-NBS2, is required for activated defense responses in theexo70B1mutant. PLoS Genetics. 2015, 11: e1004945 (These authors contributed equally).
Wang, J., Qu, B., Dou, S., Li, L., Yin, D., Pang, Z., Zhou, Z., Tian, M., Liu, G., Xie, Q., Tang, D., Chen, X., Zhu L. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC Plant Biology, 2015, 15, 1
Zhao, C., Nie, H., Shen, Q,, Zhang, S., Lukowitz, W., Tang, D*. EDR1 physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity. PLoS Genetics. 2014, 10: e1004389
Zhao, C., Waalwijk, C., de Wit, P. J., Tang, D., van der Lee, T. Relocation of genes generates non-conserved chromosomal segments in Fusarium graminearum that show distinct and co-regulated gene expression patterns. BMC Genomics.2014, 15: 191.
Shi, H., Shen, Q., Qi, Y., Yan, H., Nie, H., Chen, Y., Zhao, T., Katagiri, F., Tang, D*. BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. Plant Cell, 2013, 25: 1143-1157
Wang, Y., Yu, B., Zhao, J., Guo, J., Li, Y., Han, S., Huang, L., Du, Y., Hong, Y., Tang, D., Liu, Y. Autophagy contributes to leaf starch degradation. Plant Cell, 2013, 25: 1383-1399
Ling, H.-Q., Zhao, S., Liu, D., J. Wang, Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., Gao, C., Wu., H., Li, Y., Cui, Y., Guo, X., Zheng, S., Wang, B., Yu, K., Liang, Q., Yang, W., Lou, X., Chen, J.,Feng, M., Jian, J., Zhang, X., Luo, G., Jiang, Y., Liu, J., Wang, Z., Sha, Y., Zhang, B., Wu, H., Tang, D., Shen, Q., Xue, P., Zou, S., Wang, X., Liu, X., Wang, F., Yang, Y., An, X., Dong, Z., Zhang, K., Zhang, X., Luo, M.-C., Dvorak, J., Tong, Y., Wang, J., Yang, H., Li, Z., Wang, D., Zhang, A., Wang, J.Draft genome of the wheat A-genome progenitorTriticum urartu. Nature, 2013, 496: 87-90.
Wu, T., Tang, D.,Chen W.,Huang H.,Wang R.,Chen Y. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene.2013, 527:235-242.
Shi, H., Yan, H., Li, J., Tang, D*.BSK1, a receptor-like cytoplasmic kinase, involved in both BR signaling and innate immunity inArabidopsis. Plant Signal Behav.2013, 8: e24996
Wu, T., Chen, Y., Chen, W., Zou, S., Zhang, Y., Lin, Y., Liang, Z., Tang, D.Transgenic expression of an insect diapause-specific peptide (DSP) in Arabidopsis resists phytopathogenic fungal attacks. Eur J Plant Pathol.2013. 137:93-101
Guo, C., Wu, G., Xing, J., Li, W., Tang, D*., Cui B *. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Rep,2013, 32:687–702. (These authors contributed equally)
Zhao, C., Waalwijk, C., de Wit, P. J., Tang, D., van der Lee, T. RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogenFusarium graminearum. BMC Genomics, 2013, 14: 21.
Yao, C., Wu, Y., Nie, H., Tang, D*. RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant Journal. 2012, 71: 1015-1028
Nie, H., Zhao, H., Wu, G., Wu Y., Chen, Y., Tang, D*.SR1, a Calmodulin binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulatingNDR1andEIN3.Plant Physiology.2012, 158: 1847-1859
Pan, H.,Li,S., Tang, D*.The THO/TREX complex functions in disease resistance in Arabidopsis. Plant Signal Behav.2012, 7: 422-424
Pan, H.,Li,S., Tang, D*.HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. Plant Journal.2012, 69: 831-843
Wang, Y.,Wu,Y., Tang, D*.The autophagy gene,ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signal Behav.2011, 6: 1408-1410
Zhao, C., Waalwijk, C., de Wit, P., van der Lee, T., Tang D*.EBR1, a novel ZnCystranscription factor, affects virulence and apical dominance of hyphal tip inFusarium graminearum.Mol Plant Microbe Interact.2011, 24: 1407-1418
Wang, Y., Nishimura, M.T., Zhao, T., Tang, D*. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Journal.2011, 68: 74-87
Nie, H., Wu, Y., Yao, C., Tang, D*.Suppression ofedr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genomics.2011, 38: 137-148.
Ge, L., Peer, W., Robert, S., Swarup, R., Ye, S., Prigge, M., Cohen, J.D., Friml, J., Murphy, A., Tang, D., Estelle. M.Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1Is Required for Polar Auxin Transport. Plant Cell.2010, 22: 1749-1761
Gou M., Su N., Zheng J., Huai, J., Wu G., Zhao J, He, J., Tang, D., Yang, S., Wang G. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. Plant Journal. 2009, 60, 757–770
Tang, D.*, Simonich, M.T., Innes R. W. Mutations in LACS2, a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent Pseudomonas syringae But Confer Resistance toBotrytis cinereain Arabidopsis. Plant Physiology. 2007, 144:1093-1103
Tang, D, Jules A., Frye C. A., Innes R. W. A Mutation in the GTP hydrolysis site of Arabidopsis Dynamin-Related Protein 1E Confers Enhanced Cell Death in Response to Powdery Mildew Infection. Plant Journal. 2006, 47:75-84
Tang, D., Ade, J., Frye C.A., Innes R. W. Regulation of Plant Defense Responses in Arabidopsis by EDR2, a PH and START Domain-Containing Protein. Plant Journal. 2005, 44:245-257
Tang, D., Christiansen, K. M., Innes R. W. Regulation of Plant Disease Resistance, Stress Responses, Cell Death and Ethylene Signaling in Arabidopsis by the EDR1 Protein Kinase. Plant Physiology. 2005, 138:1018-1026
Chen, Z., Kloek, A.P., Cuzick, A., Moeder, W., Tang, D., Innes R.W., Klessig D.F., McDowell J.M., Kunkel B.N. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. Plant Journal. 2004, 37:494-504.
Tang, D. and Innes, R. W . Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant Journal. 2002, 32: 975-83
Frye, C.A., Tang, D., Innes R.W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA. 2001, 98: 373-378. (These authors contributed equally)
Chen, W., Tang, D., Suo, J., Zhang, Y., Xue, Y. Expressional profiling of genes related to pollination and fertilization in rice. C. R. Acad. Sci. Ser. III. 2001. 324:1111-1116
Tang, D., Wu, W., Li, W., Lu H., Worland, AJ. Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Thero. Appl. Genet. 2000, 101: 286-291
Wu, W., Li, W., Tang, D., Lu, H., Worland, A. J. Time-related mapping of QTLs underlying tiller number in rice. Genetics1999, 151(1):297-303
Zhu, J. H., Stephenson, P., Laurie, D. A., Li, W., Tang, D., Gale, M. D. Towards rice genome scanning by map-based AFLP fingerprinting. Mol. Gen. Genet. 1999, 261:184-195.