核磁共振成像儀

用於檢測顱內動脈瘤的醫學設備

核磁共振(MRI)又叫核磁共振成像技術。核磁共振成像儀就是因這項技術而產生的儀器。它是繼CT后醫學影像學的又一重大進步。

簡介


MRI是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈衝激后產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。
MRI提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MRI對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤后突、原發性肝癌等疾病的診斷也很有效。
MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。

發展歷史


核磁共振成像儀
核磁共振成像儀
1930年代,物理學家伊西多·拉比發現在磁場中的原子核會沿磁場方向
呈正向或反向有序平行排列,而施加無線電波之後,原子核的自旋方向發生翻轉。這是人類關於原子核與磁場以及外加射頻場相互作用的最早認識。由於這項研究,拉比於1944年獲得了諾貝爾物理學獎
1946年,美國哈佛大學的珀塞爾和斯坦福大學的布洛赫發現,將具有奇數個核子(包括質子和中子)的原子核置於磁場中,再施加以特定頻率的射頻場,就會發生原子核吸收射頻場能量的現象,這就是人們最初對核磁共振現象的認識。為此他們兩人獲得了1952年度諾貝爾物理學獎。
人們在發現核磁共振現象之後很快就產生了實際用途,早期核磁共振主要用於對核結構和性質的研究,如測量核磁矩、電四極距、及核自旋等,化學家利用分子結構對氫原子周圍磁場產生的影響,發展出了核磁共振譜,用於解析分子結構,隨著時間的推移,核磁共振譜技術不斷發展,從最初的一維氫譜發展到碳譜、二維核磁共振譜等高級譜圖,核磁共振技術解析分子結構的能力也越來越強,進入1990年代以後,人們甚至發展出了依靠核磁共振信息確定蛋白質分子三級結構的技術,使得溶液相蛋白質分子結構的精確測定成為可能。後來核磁共振廣泛應用於分子組成和結構分析,生物組織與活體組織分析,病理分析、醫療診斷、產品無損監測等方面。
20世紀70年代,脈衝傅里葉變換核磁共振儀出現了,它使13C譜的應用也日益增多。用核磁共振法進行材料成分和結構分析有精度高、對樣品限制少、不破壞樣品等優點。

基本原理


核磁共振現象來源於原子核的自旋角動量在外加磁場作用下的運動。根據量子力學原理,原子核與電子一樣,也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數決定,實驗結果顯示,不同類型的原子核自旋量子數也不同:質量數和質子數均為偶數的原子核,自旋量子數為0;質量數為奇數的原子核,自旋量子數為半整數;質量數為偶數,質子數為奇數的原子核,自旋量子數為整數。迄今為止,只有自旋量子數等於1/2的原子核,其核磁共振信號才能夠被人們利用,經常為人們所利用的原子核有: 1H、11B、13C、17O、19F、31P。
由於原子核攜帶電荷,當原子核自旋時,會由自旋產生一個磁矩,這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動量成正比。將原子核置於外加磁場中,若原子核磁矩與外加磁場方向不同,則原子核磁矩會繞外磁場方向旋轉,這一現象類似陀螺在旋轉過程中轉動軸的擺動,稱為進動。進動具有能量也具有一 定的頻率。原子核進動的頻率由外加磁場的強度和原子核本身的性質決定,也就是說,對於某一特定原子,在一定強度的的外加磁場中,其原子核自旋進動的頻率是固定不變的。原子核發生進動的能量與磁場、原子核磁矩、以及磁矩與磁場的夾角相關,根據量子力學原理,原子核磁矩與外加磁場之間的夾角並不是連續分佈的,而是由原子核 的磁量子數決定的,原子核磁矩的方向只能在這些磁量子數之間跳躍,而不能平滑的變化,這樣就形成了一系列的能級。當原子核在外加磁場中接受其他來源的能量輸入后,就會發生能級躍遷,也就是原子核磁矩與外加磁場的夾角會發生變化。這種能級躍遷是獲取核磁共振信號的基礎。為了讓原子核自旋的進動發生能級躍遷,需要為原子核提供躍遷所需要的能量,這一能量通常是通過外加射頻場來提供的。根據物理學原理當外加射頻場的頻率與原子核自旋進動的頻率相同的時候,射頻場的能量才能夠有效地被原子核吸收,為能級躍遷提供助力。因此某種特定的原子核,在給定的外加磁場中,只吸收某一特定頻率射頻場提供的能量,這樣就形成了一個核磁共振信號。

主要參數


1.化學位移
同一種核在分子中因所處的化學環境不同,使共振頻率發生位移的現象。化學位移產生的原因是分子中運動的電子在外磁場下對核產生的磁屏蔽。屏蔽作用的大小可用屏蔽因子σ來表示。一般來說屏蔽因子σ 是一個二階張量,只有在液體中由於分子的快速翻滾,化學位移的各向異性被平均,屏蔽因子才表現為一常量。
核磁共振的共振頻率:
實際測定中化學位移是以某一參考物的譜線為標準,其他譜線都與它比較,即以一無因次的量δ表示化學位移的大小。常用參考物是四甲基硅(TMS)。
核磁共振成像儀
核磁共振成像儀
H參考, H樣品分別是使參考物和被測樣品共振的磁場強度, Ho是儀器工作的磁場強度。
v參考, v樣品分別是參考物和被測樣品的共振頻率 Vo是儀器的工作頻率,化學位移的單位是(ppm百萬分之一)。
化學位移的大小受鄰近基團的電負性、磁各向異性、芳環環流、溶劑、pH值、氫鍵等許多因素的影響。其中有3種效應常被用於生物學研究。
① 環流效應:生物分子中常有含大π共軛電子云的芳環或芳雜環,如Phe、His、Tyr、Trp、嘌呤嘧啶以及卟啉環。原子核相對於這些環的距離,方位不同,受大π電子云產生的附加磁場的影響不同,對各核化學位移的影響亦不同。環流效應常用於生物分子的溶液構象研究。
② 順磁效應:Fe2 (高自旋態)、CO2 、Mn2 等順磁離子及有機自由基(自旋標記化合物)中的不成對電子對周圍核的化學位移及弛豫過程會有很大的影響,利用這個效應可研究順磁離子周圍基團的狀況。
③ pH滴定效應:在不同pH條件下,各解離基團的解離狀況不一,造成附近基團有不同的化學環境,從而使得化學位移隨pH變化。
2. 耦合常數
核與核之間以價電子為媒介相互耦合引起譜線分裂的現象稱為自旋裂分。由於自旋裂分形成的多重峰中相鄰兩峰之間的距離被稱為自旋——自旋耦合常數,用 J表示。耦合常數用來表徵兩核之間耦合作用的大小,具有頻率的因次,單位是赫茲
一般來說由於自旋耦合使高分辨核磁共振波譜變得十分複雜,但是當化學位移之差Δ γ遠大於耦合常數時,一個含有 n個自旋量子數為1 I2的核的基團將會使其鄰近基團中核的吸收峰分裂為2 n1重峰,並且這 2 n1重峰的強度分佈服從二項式係數分配公式(1 x)n。此為一級分裂波譜。
圖1中各峰由於自旋耦合而產生譜線裂分。耦合常數的大小與外加磁場的大小無關,與分子結構有關即與兩核之間鍵的數目及電子云的分佈有關。一般來說,兩核之間相隔 3個以上的化學鍵之間的耦合被稱為遠程耦合, J值很小。如果兩核之間相隔四個或四個以上的單鍵, J值基本上等於零。
3. 譜峰強度
信號強度是核磁共振譜的第三個重要信息,處於相同化學環境的原子核在核磁共振譜中會顯示為同一個信號峰,通過解析信號峰的強度可以獲知這些原子核的數量,從而為分子結構的解析提供重要信息。表徵信號峰強度的是信號峰的曲線下面積積分,即吸收峰積分曲線的高度與產生該吸收峰基團的粒子數成正比。圖1中苯環間位質子峰,苯環鄰位質子峰,α-CH質子峰,β-CH質子峰的積分強度之比為2∶2∶1∶2。
這一信息對於1H-NMR譜尤為重要,而對於13C-NMR譜而言,由於峰強度和原子核數量的對應關係並不顯著,因而峰強度並不非常重要。
4. 弛豫參數
從微觀機制上說,弛豫是由局部漲落磁場所引起的。偶極-偶極相互作用、分子轉動、化學位移各向異性、鄰近存在電四極核等等,都可以產生局部磁場。而固體中的晶格震動,液體中的Brown 運動等,使得局部磁場將隨時間漲落。弛豫過程的特性取決於分子運動的性質。由於分子運動是無規則的,局部漲落磁場也是一個隨機過程。此外,弛豫速率(即弛豫時間的倒數),具有可加和性。當存在多種弛豫機制時,總的弛豫速率是各種機制弛豫速率的總和。
①自旋-晶格弛豫時間(縱向弛豫時間) T1,核系統與周圍晶格相互作用,交換能量,使核系統恢復平衡,這一過程被稱為自旋-晶格弛豫過程,自旋-晶格弛豫過程的快慢可用自旋-晶格弛豫時間 T1來表徵。 T1的單位是秒。
②自旋-自旋弛豫時間(橫向弛豫時間) T2,等同核之間的磁相作用被稱為自旋-自旋相互作用。等同核之間相互交換自旋態並不改變系統的總能量,卻縮短了系統在激發態的能級壽命。自旋-自旋弛豫時間 T2是核處於激發態的能級壽命,以秒為單位,它與譜線寬度有關

技術成就


保羅·勞特布爾(Paul Lauterbur),美國科學家。1985年至今,他擔任美國伊利諾伊大學生物醫學核磁共振實驗室主任。因在核磁共振成像技術領域的突破性成就,而和英國科學家彼得·曼斯菲爾德(Peter Mansfield)共同獲得2003年度諾貝爾生理學或醫學獎。於2007年3月27日在美國伊利諾伊州烏爾班納市逝世,享年77歲。
勞特布爾1929年生於美國俄亥俄州小城悉尼,1951年獲凱斯理工學院理學士,1962年獲費城匹茲堡大學化學博士。1963年至1984年間,勞特布爾作為化學和放射學系教授執教於紐約州立大學石溪分校。在此期間,他致力於核磁共振光譜學及其應用的研究。勞特布爾還把核磁共振成像技術推廣應用到生物化學和生物物理學領域。
彼得· 曼斯菲爾德1933年出生於英國倫敦,1959年獲倫敦大學瑪麗女王學院理學士,1962年獲倫敦大學物理學博士學位。1962年到1964年擔任美國伊利諾伊大學物理系助理研究員,1964年到英國諾丁漢大學物理系擔任講師,現為該大學物理系教授。除物理學之外,曼斯菲爾德還對語言學、閱讀和飛行感興趣,並擁有飛機和直升機兩用的飛行員執照。他進一步發展了有關在穩定磁場中使用附加的梯度磁場的理論,為核磁共振成像技術從理論到應用奠定了基礎。
瑞典卡羅林斯卡醫學院6日宣布,2003年諾貝爾生理學或醫學獎授予美國科學家保羅·勞特布爾和英國科學家彼得·曼斯菲爾德,以表彰他們在核磁共振成像技術領域的突破性成就。他們的成就是醫學診斷和研究領域的重大成果。
在科學家成果的基礎上,第一台醫用核磁共振成像儀於20世紀80年代初問世。後來,為了避免人們把這種技術誤解為核技術,一些科學家把核磁共振成像技術的“核”字去掉,稱為其為“磁共振成像技術”,英文縮寫即MRI。
核磁共振成像技術的最大優點是能夠在對身體沒有損害的前提下,快速地獲得患者身體內部結構的高精確度立體圖像。利用這種技術,可以診斷以前無法診斷的疾病,特別是腦和脊髓部位的病變;可以為患者需要手術的部位準確定位,特別是腦手術更離不開這種定位手段;可以更準確地跟蹤患者體內的癌變情況,為更好地治療癌症奠定基礎。此外,由於使用這種技術時不直接接觸被診斷者的身體,因而還可以減輕患者的痛苦。
目前核磁共振成像儀在全世界得到初步普及,已成為最重要的診斷工具之一。2002年,全世界使用的核磁共振成像儀共有2.2萬台,利用它們共進行了約6000萬人次的檢查。

現代發展


開發出世界掃描能力最強醫用核磁共振成像儀
美國伊利諾伊大學芝加哥分校2007年12月4日宣布,該校研製的高強度的核磁共振成像儀已經完成了安全測試,即將投入臨床使用。這將是世界上掃描能力最強的醫用核磁共振成像設備。
根據美國食品和藥物管理局的規定,此類設備投入使用前必須進行嚴格的人體安全測試。
研究人員在《核磁共振雜誌》上報告說,測試證明,這種強度高達9.4特斯拉的掃描儀對於人體是安全的。與目前核磁共振成像儀利用水分子追蹤掃描不同,這一高強度的儀器藉助的是鈉離子
研究人員說,在兼顧安全性的前提下,這種高強度的核磁共振成像儀的掃描能力將大大提高,能幫助醫生更早地檢測疾病,更好地監測疾病進程。醫生將可以實時地觀測人腦內的新陳代謝等生物過程,有助於針對不同患者制定“個性化”治療方案。
例如,將來醫生可以利用高強度的掃描儀,實時觀察患者大腦內腫瘤對治療方案的響應情況,隨時調整放療劑量等。而目前,醫生通常要等好幾個星期才能觀察到腫瘤在治療方案作用下是否開始縮減。醫生將來甚至可能觀測到,在整個腫瘤縮減之前內部的單個細胞是否已開始死亡。
華人科學家開發的氦氣彌散核磁共振成像技術
美國弗吉尼亞大學華人科學家王成波領導的研究小組開發出一種新型氦氣彌散核磁共振成像技術,在2008年5月17日前於加拿大舉行的第16屆國際核磁共振學會年會上獲得青年科學家臨床醫學獎。與會專家認為,這種新技術有望推進肺部疾病的研究和治療,具有應用前景。
長期以來,醫學研究人員推測哮喘病可能會引起肺部深層組織病變,但由於技術障礙,這個推測始終難以得到證實。王成波17日接受新華社記者採訪時說,與普通核磁共振成像不同,在氦氣核磁共振成像中,患者吸入一種特殊氦氣——氦的同位素氣體。通過測量這種氦氣分子的彌散距離,科學家們可以探測到包括肺部微小氣管在內的深層組織損害。
王成波的研究小組發現,氦氣核磁共振成像探測到的肺部深層組織損害與已知的哮喘病中普通的氣管緊縮完全不同。
此外,這種肺部深層組織病變對最強力的哮喘激素藥物沒有反應,他們懷疑這可能揭示了哮喘頻繁發作的深層原因。王成波說,他們使用的特殊氦氣對人體安全,其獨特之處在於可以通過激光激化的方法大大增強核磁共振信號。目前這種氦氣彌散核磁共振成像技術仍處於試驗研究階段,基本成像成本稍高於普通的核磁共振成像。
王成波等研究人員正計劃改進試驗設計,同時還將使用計算機X射線斷層攝影等其他成像技術進行類似的對比試驗。近年來,哮喘病正逐漸成為一種公眾健康威脅。目前,這種病威脅著世界約1.5億人的健康,其中兒童患者達5000萬。研究哮喘病的發病機理和病程進展正成為臨床醫學領域的重要課題。

技術應用


NMR

NMR技術即核磁共振譜技術,是將核磁共振現象應用於分子結構測定的一項技術。對於有機分子結構測定來說,核磁共振譜扮演了非常重要的角色,核磁共振譜與紫外光譜紅外光譜質譜一起被有機化學家們稱為“四大名譜”。目前對核磁共振譜的研究主要集中在1H和13C兩類原子核的圖譜。
核磁共振的特點:①共振頻率決定於核外電子結構和核近鄰組態;②共振峰的強弱決定於該組態在合金中所佔的比例;③譜線的解析度極高。
早期的核磁共振譜主要集中於氫譜,這是由於能夠產生核磁共振信號的1H原子在自然界丰度極高,由其產生的核磁共振信號很強,容易檢測。隨著傅立葉變換技術的發展,核磁共振儀可以在很短的時間內同時發出不同頻率的射頻場,這樣就可以對樣品重複掃描,從而將微弱的核磁共振信號從背景噪音中區分出來,這使得人們可以收集13C核磁共振信號。
近年來,人們發展了二維核磁共振譜技術,這使得人們能夠獲得更多關於分子結構的信息,目前二維核磁共振譜已經可以解析分子量較小的蛋白質分子的空間結構。

生物學中應用

核磁共振波譜技術用來研究生物大分子有如下特點:
①不破壞生物高分子結構(包括空間結構)。
②在溶液中測定符合生物體的常態,也可測定固體樣品,比較晶態和溶液態的構象異同。
③不僅可用來研究構象而且可用來研究構象變化即動力學過程。
④可以提供分子中個別基團的信息,對於比較小的多肽和蛋白質已可通過二維NMR獲得全部三維結構信息。
⑤可用來研究活細胞和活組織。
在生物學研究中最常用的是1H,13C,31P譜,此外還有15N,19F等。1H譜發展最早,1H在生物體中無所不在,核磁相對靈敏度高,故應用最廣,包括用於核磁成像。缺點是含氫基團極多,譜線易重疊而不易解析。碳亦為生物體內重要元素,但12C自旋為零,13C天然丰度低,僅為1.1%,對等數量的核在相同磁場下其靈敏度只及1H的1.6%。其優點是化學位移範圍寬,在寬頻去耦條件下進行實驗,波譜簡單,易分辨,隨著測定技術及13C標記方法的發展,13C 譜已有極廣泛的應用。31P譜常用於活組織測定,觀察ATP等含磷化合物的代謝過程,並已用於核磁成像。
NMR在生物學研究中範圍很廣。主要有:
分析研究:如確定生物分子成分及濃度,特別是可不破壞組織細胞而測知其中組分;確定異構體比例;確定分子解離狀態;確定金屬離子或配基是否處於結合狀態;以及測定細胞膜內外的pH差異。
熱力學研究:如測定酶與底物、配基、抑製劑的結合常數;測定可解離基團的 pK值,特別是能測定生物大分子中分處不同微環境的同類殘基的同類基團的不同 pK值,這是其他方法所不及的;還可測定相變溫度,Δ G等其他熱力學參數。
動力學研究:監測反應進程,測定各組分隨時間的變化;通過變溫實驗和線形分析,測平衡過程的動力學常數,包括某些生化反應的反應速率,研究分子間(如酶與抑製劑,DNA與藥物)相互作用的動力學過程。
分子運動研究:弛豫參數( T1, T2, NOE)可用來研究生物高分子的動力學,以及生物膜的流動性。
分子構象及構象變化研究:目前用二維核磁共振技術加上計算機模擬已能獨立確定小的蛋白質分子及核苷酸片段在溶液中的三維空間結構。改變物理化學因素或加入可與生物分子相互作用的其他物質,將會使核磁圖譜發生變化,從而可用來研究這種構象變化。
活體研究:用31P,13C,1H磁共振方法測定活細胞,活組織以致整體的代謝物濃度及變化,測定細胞內pH值,觀察藥物或不同生理狀況對代謝的影響。研究對象有微生物、植物、各種動物以至人體器官等。