算經十書
算經十書
《算經十書》是指漢、唐一千多年間的十部著名的數學著作,他們曾經是隋唐時代國子監算學科的教科書。十部書的名稱是:《周髀算經》、《九章算術》、《海島算經》、《張丘建算經》、《夏侯陽算經》、《五經算術》、《緝古算經》、《綴術》、《五曹算經》、《孫子算經》。《算經十書》標誌著中國古代數學的高峰。
唐代國子監內設立算學館,置博士、助教指導學生學習數學,唐高宗顯慶元年(656),規定《周髀算經》、《九章算術》、《孫子算經》、《五曹算經》、《夏侯陽算經》、《張丘建算經》、《海島算經》、《五經算術》、《綴術》、《緝古算經》十部漢、唐一千多年間的十部著名數學著作作為國家最高學府的算學教科書,用以進行數學教育和考試,後世通稱為《算經十書》.
《四庫全書》
在明代,由於不夠重視以及其他的社會原因,這十部算經幾乎失傳。直到清乾隆年間,由於《四庫全書》的編輯和乾嘉學派的興起,十部算經才被重新整理出版。當時發現流傳下來的南宋刻本(均系孤本)有《周髀》、《九章》(只有前五章,殘)、《孫子》、《五曹》、《夏侯陽》、《張丘建》等七種,其影抄本呈入清宮,收藏於北京故宮博物院。其後,除了《夏侯陽》一種又不知去向外,其餘六種南宋刻本經歷代藏書家收藏流傳至今,存於上海圖書館和北京大學圖書館。
清代學者戴震在參加編輯《四庫全書》時,又由明代《永樂大典》中抄出《周髀》、《九章》、《孫子》、《五曹》、《夏侯陽》、《海島》、《五經》等七種,由影宋抄本中抄出《張丘建》、《緝古》二種,《記遺》是由明刻本抄出,十部算經於是都被抄入《四庫全書》。由《永樂大典》中抄出的七種還曾用武英殿聚珍版刊印。
1773年孔繼涵以戴震的校訂本為主,將十部算經刻入《微波榭叢書》之中,題名為《算經十書》。這是《算經十書》名稱的首次出現。
因此,《算經十書》按狹義的理解,是專指孔刻《微波榭叢書》之一的書名;按廣義的理解,則是指上述漢唐千餘年間陸續出現的十部算書。通常都是按廣義來理解。
《周髀算經》
對古代中國數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部。它對以後古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的。在中國,它在一千幾百年間被直接用作數學教育的教科書。它還影響到國外,朝鮮和日本也都曾拿它當作教科書。
《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補。《漢書·藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作。1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,
《九章算術》
從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演演算法。書中還記載有解決各種面積和體積問題的演演算法以及利用勾股定理進行測量的各種問題。《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項係數不是負)的數值解法。還有整整一章是講述聯立一次方程解法的,這種解法實質上和中學里所講的方法是一致的。這要比歐洲同類演演算法早出一千五百多年。在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演演算法則。
影響意義
《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外。在歐洲中世紀,《九章算術》中的某些演演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲。再如“盈不足”(也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作“中國演演算法”。作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版。
《孫子算經》
《孫子算經》
《孫子算經》中國是世界上最早採用十進位值制記數的國家,春秋戰國之際已普遍應用的籌算,即嚴格遵循了十進位值制。關於算籌記數法僅見的資料載於《孫子算經》。《孫子算經》三卷,成書年代約為公元4世紀,該書上卷是關於籌演演算法則的系統介紹,下卷則有著名的“物不知數”題,亦稱“孫子問題”。卷下第31題,可謂是後世“雞兔同籠”題的始祖,後來傳到日本,變成“鶴龜算”。書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾隻雞和兔?
具有重大意義的是卷下第26題:“今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何?答曰:『二十三』”。《孫子算經》不但提供了答案,而且還給出了解法。南宋大數學家秦九韶則進一步開創了對一次同餘式理論的研究工作,推廣“物不知數”的問題。德國數學家高斯﹝K.F. Gauss.公元1777-1855年﹞於公元1801年出版的《算術探究》中明確地寫出了上述定理。公元1852年,英國基督教士偉烈亞士﹝Alexander Wylie公元1815-1887年﹞將《孫子算經》“物不知數”問題的解法傳到歐洲,公元1874年馬蒂生﹝L.Mathiesen﹞指出孫子的解法符合高斯的定理,從而在西方的數學史里將這一個定理稱為“中國的剩餘定理”﹝Chinese remainder theorem﹞。
《五曹算經》
《五曹算經》此系南宋刊本《五曹算經》卷首書影,刻於南宋嘉定五年(一二一二年)。《五曹算經》是我國的一部數學古籍,作者是北周的甄鸞(字叔遵,河北無極人),他通曉天文曆法,曾任司隸大夫、漢中郡守等職務。唐李淳風等曾為之作注。
夏侯陽算經,算經十書之一。原書已失傳無考。北宋元豐九年(1084年)所刻《夏侯陽算經》是唐中葉的一部算書。引用當時流傳的乘除捷法,解答日常生活中的應用問題,保存了很多數學史料。
《張丘建算經》
自張邱建以後,中國數學家對百雞問題的研究不斷深入,百雞問題也幾乎成了不定方程的代名詞,從宋代到清代圍繞百雞問題的數學研究取得了很好的成就。
《海島算經》是三國時期劉徽(約225—約295)所作。這部書中講述的都是利用標桿進行兩次、三次、最複雜的是四次測量來解決各種測量數學的問題。這些測量數學,正是中國古代非常先進的地圖學的數學基礎。此外,劉徽對《九章算術》所作的註釋工作也是很有名的。一般地說,可以把這些註釋看成是《九章算術》中若干演演算法的數學證明。劉徽注中的“割圓術”開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題。
《緝古算經》
唐代立於學官的十部算經中,王孝通《緝古算經》是唯一的一部由唐代學者撰寫的。王孝通主要活動於六世紀末和七世紀初。他出身於平民,少年時期便開始潛心鑽研數學,隋朝時以歷算入仕,入唐后被留用,唐朝初年做過算學博士(亦稱算曆博士),后升任通直郎、太史丞。畢生從事數學和天文工作。唐武德六年(623),因行用的傅仁均《戊寅元歷》推算日月食與實際天象不合,與吏部郎中祖孝孫受命研究傅仁均歷存在的問題,武德九年(626)又與大理卿崔善為奉詔校勘傅仁均歷,駁正術錯三十餘處,並付太史施行。王孝通所著《緝古算術》,被用作國子監算學館數學教材,奉為數學經典,故後人稱為《緝古算經》。全書一卷(新、舊《唐書》稱四卷,但由於一卷的題數與王孝通自述相符,因此可能在卷次分法上有所不同)共二十題。第一題為推求月球赤緯度數,屬於天文曆法方面的計算問題,第二題至十四題是修造觀象台、修築堤壩、開挖溝渠,以及建造倉廩和地窖等土木工程和水利工程的施工計算問題,第十五至二十題是勾股問題。這些問題反映了當時開鑿運河、修築長城和大規模城市建設等土木和水利工程施工計算的實際需要。
北周甄鸞所著,共二卷。書中對《易經》、 《詩經》、《尚書》、 《周禮》、《儀禮》、《禮記》、《論語》、《左傳》等儒家經典及其古注中與數字有關的地方詳加註釋,對研究經學的人或可有一定的幫助,但就數學的內容而論,其價值有限。現傳本亦系抄自《永樂大典》。
《數術記遺》
祖沖之
《算經十書》的其餘幾部書也記載有一些具有世界意義的成就。例如《孫子算經》中的“物不知數”問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的“百雞問題”(不定方程問題)等等都比較著名。而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的。
《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了。
《算經十書》較完備地體現了古代中國數學各方面的內容。其中大多數還曾傳入朝鮮和日本,成了他們進行數學教育和考試的教科書。