SMC氣缸

用於印刷、半導體等領域的機件

SMC氣缸引導活塞在其中進行直線往複運動的圓筒形金屬機件。工質在發動機氣缸中通過膨脹將熱能轉化為機械能;氣體在壓縮機氣缸中接受活塞壓縮而提高壓力。渦輪機旋轉活塞式發動機等的殼體通常也稱“氣缸”。氣缸的應用領域:印刷(張力控制)、半導體(點焊機、晶元研磨)、自動化控制、機器人等等。

產品種類


氣壓傳動中將壓縮氣體的壓力能轉換為機械能的氣動執行元件。氣缸有作往複直線運動的和作往複擺動的兩類(見圖)。作往複直線運動的氣缸又可分為單作用、雙作用、膜片式和衝擊氣缸4種。
單作用氣缸:僅一端有活塞桿,從活塞一側供氣聚能產生氣壓,氣壓推動活塞產生推力伸出,靠彈簧或自重返回。
②雙作用氣缸:從活塞兩側交替供氣,在一個或兩個方向輸出力。
③膜片式氣缸:用膜片代替活塞,只在一個方向輸出力,用彈簧複位。它的密封性能好,但行程短。
④衝擊氣缸:這是一種新型元件。它把壓縮氣體的壓力能轉換為活塞高速(10~20米/秒)運動的動能,藉以作功。衝擊氣缸增加了帶有噴口和泄流口的中蓋。中蓋和活塞把氣缸分成儲氣腔、頭腔和尾腔三室。它廣泛用於下料、沖孔、破碎和成型等多種作業。作往複擺動的氣缸稱擺動氣缸,由葉片將內腔分隔為二,向兩腔交替供氣,輸出軸作擺動運動,擺動角小於280°。此外,還有迴轉氣缸氣液阻尼缸步進氣缸等。

主要作用


將壓縮空氣的壓力能轉換為機械能,驅動機構作直線往複運動、擺動和旋轉運動。

產品分類


直線運動往複運動的氣缸、擺動運動的擺動氣缸、氣爪等。

結構特徵


氣缸是由缸筒、端蓋、活塞、活塞桿和密封件組成,其內部結構如圖所示:SMC氣缸原理圖
1)缸筒缸筒的內徑大小代表了氣缸輸出力的大小。活塞要在缸筒內做平穩的往複滑動,缸筒內表面的表面粗糙度應達到Ra0.8um。對鋼管缸筒,內表面還應鍍硬鉻,以減小摩擦阻力和磨損,並能防止鏽蝕。缸筒材質除使用高碳鋼管外,還是用高強度鋁合金黃銅。小型氣缸有使用不鏽鋼管的。帶磁性開關的氣缸或在耐腐蝕環境中使用的氣缸,缸筒應使用不鏽鋼鋁合金或黃銅等材質。SMC CM2氣缸活塞上採用組合密封圈實現雙向密封,活塞與活塞桿用壓鉚鏈接,不用螺母。2)端蓋端蓋上設有進排氣通口,有的還在端蓋內設有緩衝機構。桿側端蓋上設有密封圈和防塵圈,以防止從活塞桿處向外漏氣和防止外部灰塵混入缸內。桿側端蓋上設有導向套,以提高氣缸的導向精度,承受活塞桿上少量的橫向負載,減小活塞桿伸出時的下彎量,延長氣缸使用壽命。導向套通常使用燒結含油合金、前傾銅鑄件。端蓋過去常用可鍛鑄鐵,為減輕重量並防鏽,常使用鋁合金壓鑄,微型缸有使用黃銅材料的。

產品系列


SMC氣缸所設緩衝裝置種類很多,上述只是其中之一,當然也可以在氣動迴路上採取措施,達到緩衝目的。組合組合氣缸一般指氣缸與液壓缸相組合形成的氣-液阻尼缸、氣-液增壓缸等。眾所周知,通常氣缸採用的工作介質是壓縮空氣,其特點是動作快,但速度不易控制,當載荷變化較大時,容易產生“爬行”或“自走”現象;而液壓缸採用的工作介質是通常認為不可壓縮的液壓油,其特點是動作不如氣缸快,但速度易於控制,當載荷變化較大時,採用措施得當,一般不會產生“爬行”和“自走”現象。把氣缸與液壓缸巧妙組合起來,取長補短,即成為氣動系統中普遍採用的氣-液阻尼缸。氣-液阻尼缸工作原理見圖42.2-5。實際是氣缸與液壓缸串聯而成,兩活塞固定在同一活塞桿上。液壓缸不用泵供油,只要充滿油即可,其進出口間裝有液壓單向閥、節流閥及補油杯。當氣缸右端供氣時,氣缸克服載荷帶動液壓缸活塞向左運動(氣缸左端排氣),此時液壓缸左端排油,單向閥關閉,油只能通過節流閥流入液壓缸右腔及油杯內,這時若將節流閥閥口開大,則液壓缸左腔排油通暢,兩活塞運動速度就快,反之,若將節流閥閥口關小,液壓缸左腔排油受阻,兩活塞運動速度會減慢。這樣,調節節流閥開口大小,就能控制活塞的運動速度。可以看出,氣液阻尼缸的輸出力應是氣缸中壓縮空氣產生的力(推力或拉力)與液壓缸中油的阻尼力之差。
CE2 行程可讀出氣缸(帶制動型)
CEP1 高精度行程可讀出氣缸
CG1/CG1W… 氣缸
CJ2/CJ2W… 氣缸
CJ2X/CUX/CQSX… 低速氣缸
CJP/CJPB/CJPS 針型氣缸
CLQ/CLQ 薄型鎖緊氣缸
CLS/CLS 帶鎖氣缸
CNA/CNAW 帶鎖氣缸
CNG 帶鎖氣缸
CNS/CNS 帶鎖氣缸
CQM 薄型氣缸
CQM/CQM 薄型氣缸
CRA1 擺動氣缸
CRB1 擺動氣缸
CRB2 擺動氣缸
CRBU2 自由安裝型擺動氣缸
CRJ 微型擺動氣缸
CRQ2 薄型擺動氣缸
CS1/CS1W/CS1 * Q 氣缸

工作原理


根據工作所需力的大小來確定活塞桿上的推力和拉力。由此來選擇氣缸時應使氣缸的輸出力稍有餘量。若缸徑選小了,輸出力不夠,氣缸不能正常工作;但缸徑過大,不僅使設備笨重、成本高,同時耗氣量增大,造成能源浪費。在夾具設計時,應盡量採用增力機構,以減少氣缸的尺寸。氣缸下面是氣缸理論出力的計算公式:F:氣缸理論輸出力(kgf)F′:效率為85%時的輸出力(kgf)--(F′=F×85%)D:氣缸缸徑(mm)P:工作壓力(kgf/cm2)例:直徑340mm的氣缸,工作壓力為3kgf/cm2時,其理論輸出力為多少?芽輸出力是多少?將P、D連接,找出F、F′上的點,得:F=2800kgf;F′=2300kgf在工程設計時選擇氣缸缸徑,可根據其使用壓力和理論推力或拉力的大小,從經驗表1-1中查出。例:有一氣缸其使用壓力為5kgf/cm2,在氣缸推出時其推力為132kgf,(氣缸效率為85%)問:該選擇多大的氣缸缸徑?由氣缸的推力132kgf和氣缸的效率85%,可計算出氣缸的理論推力為F=F′/85%=155(kgf)由使用壓力5kgf/cm2和氣缸的理論推力,查出選擇缸徑為?63的氣缸便可滿足使用要求。

公司介紹


SMC氣缸
SMC氣缸
SMC(中國)有限公司從日本引進了世界最先進的自動化生產技術、設備。全套設備主要包括:全自動精密壓鑄生產線、壓力成形生產線、數控精密專用加工生產線、表面處理塗裝生產線、自動-半自動組裝檢測生產線等世界一流的生產線。SMC(中國)有限公司生產的(日本制式、美國制式、歐洲制式)五大系列氣缸和新型號的氣動三聯件已經遠銷全球20多個國家與地區。
SMC氣動元件超過11000種基本系列,610000餘種不同規格,主要包括氣動潔凈設備、電磁閥、各種氣動壓力、流量、方向控制閥、各種形式的氣缸、擺缸、真空設備氣動儀錶元件及設備,以及其他各種感測器與工業自動化元器件等。

發展歷程

SMC總公司於1994年9月開始在北京投資建廠,當時投資總額為20億日元,建立了佔地面積為20000m2的第一工廠。在北京經濟技術開發區SMC的第一工廠尚未竣工時,就開始了第二工廠的建設。二廠的佔地面積為60000m2,相當於一廠的3倍。幾年來,SMC(中國)公司似乎是與自己賽跑的人,不斷追加投資,投資總額已達120億日元,註冊資金達100億日元。SMC的策略很簡單:建好一座廠房,引進先進設備,培訓一批人才,鞏固一流業績。SMC下一步建設的第三工廠的廠址選在北京天竺出口加工區,佔地面積更達到180000m2,相當於整個出口加工區面積的45%。為了加強對客戶的技術支持和售後服務,SMC(中國)公司設立的營業所已經遍及上海、南京、無錫、天津、哈爾濱、西安等13個大城市。

戰略投資

SMC在北京建立的大型現代化企業是面向全球的氣動元件生產、出口基地。也就是說,SMC在中國的投資是出於全球戰略布局的重要選擇,而不是出於區域性投資的考慮。

空降部隊

SMC(中國)公司從日本引進了當今世界同行業最精銳的自動化生產設備。全套設備主要包括:全自動精密壓鑄設備、精密數控加工機床、程式控制陽極氧化處理生產線、自動化噴漆塗裝線、冷壓成形機、組裝生產線、自動檢測機,形成了精密鑄造――精密加工――表面處理――組裝――出廠檢驗,完整的氣動元件現代化生產工藝流程。

質量標準

SMC的質量標準是全球的,SMC(中國)公司是中國氣動行業中第一家率先通過ISO14001環境管理體系認證的企業。曾經有人對趙彤說,如果將SMC產品的質量降低一半、價格也降低一半,其產品可能在中國更有市場。趙彤則將產品分為四類,即高質高價、高質低價、低質高價、低質低價,第三種無疑會被淘汰,第四種的市場空間留給其他競爭對手,高質低價是企業、用戶永遠追求的目標。SMC絕不會只為眼前的利益,放棄對高質量產品的追求,即進行產品開發時不將中國客戶與世界上的其他客戶區別對待,而是始終採取高質量的市場策略,耐心地等待中國市場的成熟,培育市場的成熟。

產品大全

SMC對客戶永遠不說No,儘力滿足客戶的各種特殊需求。“精益求精的氣動技術,應有盡有的氣動元件”是趙彤親自定下的基調,也是SMC對客戶的承諾。SMC(中國)公司正在生產的5大系列氣缸(日本制式、美國制式、歐洲制式)和全系列的氣動三聯件FRL產品均為2000年末、21世紀初最新設計的產品,具有國際一流水平。

本地管理

SMC通過派中國年輕的大學畢業生到日本去學習研究,通過在建廠初始階段請大批的日本工程技術人員到中國工廠進行技術指導,使中國的年輕人能夠迅速掌握完整的現代化生產加工工藝。SMC(中國)公司在建廠初期,有60餘名日本人進行技術指導。經過幾年的努力,公司的生產管理、設備管理、人員管理、資金管理、預決算管理、SMC全球連接核算等管理、技術均由中方人員獨立承擔,公司僅有5名日本人。在採訪中,記者留下了如此深刻的印象:SMC(中國)公司是跨國外商獨資企業本地化的典範。

廣泛合作

SMC於1967年在澳大利亞邁開了打入國際市場第一步。如今,在39個國家,設立了230個營業所。隨著SMC國際行銷網路的擴展,SMC在世界市場的佔有率已經超過20%。2010年SMC 與北美最大的工業零配件經銷商之一,BDI公司,達成戰略合作協議。BDI在全球11個國家有130多家分公司(中國的獨資子公司是:必迪艾(天津)軸承有限公司),強強聯合,擴大世界市場份額。

公司大事

1993年6月——在清華大學北京理工大學哈爾濱工業大學建立了氣動技術中心
1994年9月——SMC(中國)有限公司註冊成立
1995年3月——SMC(中國)有限公司營業部成立
1995年6月——第一工廠1號棟廠房奠基
1996年6月——第一工廠1號棟廠房竣工、CYL生產設備搬入
1996年7月——第一支氣缸MBB80-100誕生
1996年9月——第一批氣缸出口日本
1997年1月——第二工廠建立,第一工廠2號棟廠房,第二工廠1、2號棟廠房竣工
1997年8月——SMC北京職工宿舍竣工
1997年9月——SMC北京工廠開業典禮
1999年8月——第一批氣缸出口美國
1999年9月——通過ISO9002質量體系認證
1999年10月——第二工廠3號棟廠房竣工、FRL生產設備搬入
1999年12月——第一批氣缸出口歐洲
2000年4月——第一個FRL產品AR10-M5誕生
2000年8月——第一批FRL產品出口日本
2000年8月——第二工廠4、5號棟廠房奠基開工
2000年8月——第三工廠18萬平米土地購入
2000年10月——建立南京理工大學氣動技術中心
2001年6月——第二工廠4、5號棟廠房竣工
2001年10月——第三工廠1、2號棟廠房奠基
2002年1月——通過ISO9001(2000版)質量管理體系認證
2002年3月——被評為北京工業外商投資企業100強
2002年3月——被評為2001年度工業系統出口500強
2002年6月——上海分公司成立
2002年6月——上海浦東溫控器技術支持中心成立
2002年10月——SMC上海交通大學氣動技術中心成立
2003年2月——獲北京市人民政府頒發的2001-2002年度北京國際經貿外商合作獎
2003年4月——被評為首都精神文明單位
2003年6月——被評為北京經濟技術開發區5大出口企業和5大實際投資外商企業
2003年8月——被評為北京市防治非典型肺炎先進單位
2004年5月——上海分公司土地簽字儀式舉行
2004年7月——在2003年度中國機械500強企業名單,SMC(中國)有限公司作為氣動行業唯一代表榜上有名(333位)
2004年9月——SMC(中國)有限公司研發中心奠基典禮
2004年9月——根據《日本經濟新聞》2004年9月21日發布的結果,SMC在2004年度評選選出的日本最佳企業300強中名列第32位
2005年——北京第四工廠奠基,“SMC中國”被評為“2005年度中國機械500強企業”
2006年——SMC中國”被評為“2006年度中國機械500強企業”
2007年——SMC中國”被評為“2007年度中國機械500強企業”
2008年——SMC中國”被評為“2008年度中國機械500強企業”。“SMC Corporation”被評為“2008年度世界機械500強企業(躍居409名)”

執行元件


氣動執行元件和控制元件氣動執行元件是一種能量轉換裝置,它是將壓縮空氣的壓力能轉化為機械能,驅動機構 實現直線往複運動,擺動,旋轉運動或衝擊動作。氣動執行元件分為氣缸和氣馬達兩大類.氣缸用於提供直線往複運動或擺動,輸出力和直線速度或擺動角位移。氣馬達用於提供連續 迴轉運動,輸出轉矩和轉速。氣動控制元件用來調節壓縮空氣的壓力流量和方向等,以保證執行機構按規定的程序正 常進行工作。氣動控制元件按功能可分為壓力控制閥流量控制閥和方向控制閥。第一節 氣缸 一,氣缸的工作原理,分類及安裝形式 氣缸的工作原理, 1 2 14 3 4 5 6 13 12 11 10 9 8 7 1.氣缸的典型結構和工作原理 圖 13-1 普通雙作用氣缸 1,3-緩衝柱塞 2-活塞 4-缸筒 5-導向套 6-防塵圈 7-前端蓋 8-氣口 9- 感測器 10-活塞桿 11-耐磨環 12-密封圈 13-後端蓋 14-緩衝節流閥 以氣動系統中最常使用的單活塞桿雙作用氣缸為例來說明,氣缸典型結構如圖 13-1 所示。它由缸筒,活塞,活塞桿,前端蓋,後端蓋及密封件等組成。雙作用氣缸內部被活塞 分成兩個腔。有活塞桿腔稱為有桿腔,無活塞桿腔稱為無桿腔。當從無桿腔輸入壓縮空氣時,有桿腔排氣,氣缸兩腔的壓力差作用在活塞上所形成的力 克服阻力負載推動活塞運動,使活塞桿伸出; 當有桿腔進氣,無桿腔排氣時,使活塞桿縮回。若有桿腔和無桿腔交替進氣和排氣,活塞實現往複直線運動。2.氣缸的分類 氣缸的種類很多,一般按氣缸的結構特徵,功能,驅動方式或安裝方法等進行分類。分 類的方法也不同。按結構特徵,氣缸主要分為活塞式氣缸和膜片式氣缸兩種。按運動形式分 為直線運動氣缸和擺動氣缸兩類。3.氣缸的安裝形式 氣缸的安裝形式可分為 1)固定式氣缸 氣缸安裝在機體上固定不動,有腳座式和法蘭式。2)軸銷式氣缸 缸體圍繞固定軸可作一定角度的擺動,有 U 形鉤式和耳軸式。3)迴轉式氣缸 缸體固定在機床主軸上,可隨機床主軸作高速旋轉運動。這種氣缸常 用於機床上氣動卡盤中,以實現工件的自動裝卡。4)嵌入式氣缸 氣缸缸筒直接製作在夾具體內。二,常用氣缸的結構原理 1.普通氣缸 包括單作用式和雙作用式氣缸。常用於無特殊要求的場合。圖 13-2 為最常用的單桿雙作用普通氣缸的基本結構,氣缸一般由缸筒,前後缸蓋活 塞,活塞桿,密封件和緊固件等零件組成。缸筒 7 與前後缸蓋固定連接。有活塞桿側的缸蓋 5 為前缸蓋,缸底側的缸蓋 14 為後缸 蓋。在缸蓋上開有進排氣通口,有的還設有氣緩衝機構。前缸蓋上,設有密封圈,防塵圈 3,同時還設有導向套 4,以提高氣缸的導向精度。活塞桿 6 與活塞 9 緊固相連。活塞上除有密 封圈 10,11 防止活塞左右兩腔相互漏氣外,還有耐磨環 12 以提高氣缸的導向性;帶磁性開 關的氣缸,活塞上裝有磁環。活塞兩側常裝有橡膠墊作為緩衝墊 8.如果是氣緩衝,則活塞 兩側沿軸線方向設有緩衝柱塞,同時缸蓋上有緩衝節流閥和緩衝套,當氣缸運動到端頭時,圖 13-2 普通雙作用氣缸 1,13-彈簧擋圈 2-防塵圈壓板 3-防塵圈 4-導向套 5-桿側端蓋 6-活塞桿 7-缸筒 8-緩衝墊 9-活塞 10-活塞密封圈 11-密封圈 12-耐磨環 14-無桿 側端蓋 緩衝柱塞進入緩衝套,氣缸排氣需經緩衝節流閥,排氣阻力增加,產生排氣背壓,形成緩衝 氣墊,起到緩衝作用。2.特殊氣缸 圖 13-3 1-缸體 薄膜氣缸 4-活塞桿 2-膜片 3-膜盤 為了滿足不同的工作需要,在普通氣缸的基礎上,通過改變或增加氣缸的部分結構,設 計開發出多種特殊氣缸。(1) 薄膜式氣缸 圖 13-3 為膜片氣缸的工作原理圖。膜片有平膜片和盤形膜片兩種 一 般用夾織物橡膠,鋼片或磷青銅片製成,厚度為 5~6mm (有用 1~2mm 厚膜片的) 。圖 13-3 所示的膜片氣缸的功能類似於彈簧複位的活塞式單作用氣缸,工作時,膜片在 壓縮空氣作用下推動活塞桿運動。它的優點是:結構簡單,緊湊,體積小,重量輕,密封性 好,不易漏氣,加工簡單,成本低,無磨損件,維修方便等,適用於行程短的場合。缺點是 行程短,一般不趁過 50mm.平膜片的行程更短,約為其直徑的 1/10。(2) 磁性開關氣缸 磁性開關氣缸是指在氣缸的活塞上安裝有磁環,在缸筒上直接安裝 磁性開關,磁性開關用來檢測氣缸行程的位置,控制氣缸往複運動。因此,就不需要在缸筒 上安裝行程閥行程開關來檢測氣缸活塞位置,也不需要在活塞桿上設置擋塊。其工作原理如圖 13-4 所示。它是在氣缸活塞上安裝永久磁環,在缸筒外殼上裝有舌簧 開關。開關內裝有舌簧片,保護電路和動作指示燈等,均用樹脂塑封在一個盒子內。當裝有 永久磁鐵的活塞運動到舌簧片附近,磁力線通過舌簧片使其磁化,兩個簧片被吸引接觸,則 開關接通。當永久磁鐵返回離開時,磁場減弱,兩簧片彈開,則開關斷開。由於開關的接通 或斷開,使電磁閥換向,從而實現氣缸的往複運動。圖 13-4 磁性開關氣缸 1-動作指示燈 2-保護電路 3-開關外殼 4-導線 5-活塞 6-磁環 7-缸筒 8-舌簧開關 氣缸磁性開關與其它開關的比較見表 3-1。表 3-錯誤!未定義書籤。氣缸磁性開關與其它開關的比較 開關形式 控制原理 成本 調整安裝複雜性 (3)帶閥氣缸 帶閥氣缸是由氣缸,磁性開關 磁場變化 低 方便,不佔位置 換向閥和速度控制 閥等組成的一種組 低 麻煩,佔位置 合式氣動執行元件。行程開關 機械觸點 它省去了連接管道 接近開關 阻抗變化 高 麻煩,佔位置 和管接頭,減少了能 量損耗,具有結構緊 湊,安裝方便等優 點。帶閥氣缸的閥有光電開關 光的變化 高 麻煩,佔位置 電控,氣控,機控和 手控等各種控制方 式。閥的安裝形式有安裝在氣缸尾部,上部等幾種。如圖 13-5 所示,電磁換向閥安裝在氣 缸的上部,當有電信號時,則電磁閥被切換,輸出氣壓可直接控制氣缸動作。圖 13-5 帶閥組合氣缸 1-管接頭 2-氣缸 3-氣管 4-電磁換向閥 5-換向閥底板 6-單向節流閥組合 件 7-密封圈。(4) 帶導桿氣缸 圖 13-6 為帶導桿氣缸,在缸筒兩側配導向用的滑動軸承 (軸 瓦式或滾珠式),因此導向精度高,承受橫向載荷能力強。 13-6 典型帶導桿氣缸的結構 13-6 典型帶導桿氣缸的結構 (5)無桿氣缸 無桿氣缸是指利用活塞直接或間 接方式連接外界執行機構,並使其跟隨活塞實現往複運動的氣缸。這種氣缸的最 大優點是節省安裝空間。1)磁性無桿氣缸 活塞通過磁力帶動缸體外部的移動體做同步移動,其結構如 圖 13-7 所示。它的工作原理是:在活塞上安裝一組高強磁性的永久磁環,磁力 線通過薄壁缸筒與套在外面的另一組磁環作用,由於兩組磁環磁性相反,具有很 強的吸力。當活塞在缸筒內被氣壓推動時,則在磁力作用下,帶動缸筒外的磁環 套一起移動。氣缸活塞的推力必須與磁環的吸力相適應。圖 13-7 磁性無桿氣缸 1-套筒 2-外磁環 3-外磁導板 4-內磁環 5-內磁導板 6-壓蓋 7-卡環 8 -活塞 9-活塞軸 10-緩衝柱塞 11-氣缸筒 12-端蓋 13-進,排氣口 2)機械接觸式無桿氣缸 稱機械接觸式無桿氣缸,其結構如 13-8 所示。在氣 缸缸管軸向開有一條槽,活塞與滑塊在槽上部移動。為了防止泄漏及防塵需要,在開口部採用聚氨脂密封帶和防塵不鏽鋼帶固定在兩 端缸蓋上,活塞架穿過槽,把活塞與滑塊連成一體。活塞與滑塊連接在一起,帶 動固定在滑塊上的執行機構實現往複運動。這種氣缸的特點是:1) 與普通氣缸 相比,在同樣行程下可縮小 1/2 安裝位置;2) 不需設置防轉機構;3) 適用於缸 徑 10~80mm,最大行程在缸徑≥40mm 時可達 7m;4) 速度高,標準型可達 0.1~ 0.5m/s;高速型可達到 0.3~3.0m/s.其缺點 圖 13-8 機械接觸式無桿氣缸 是:1) 密封性能差,容易產生外 泄漏。在使 l-節流閥 2-緩衝柱塞 3-密封帶 4-防塵不鏽鋼帶 5-活塞 6-滑塊 7-活塞架 用三位閥時必須選用中壓式;2) 受負載力小,為了增加負載能力,必須增加導 向機構。圖 13-8 機械接觸式無桿氣缸 l-節流閥 2-緩衝柱塞 3-密封帶 4-防塵不鏽鋼帶 5-活塞 6-滑塊 7-活塞 架 (6)鎖緊氣缸 帶有鎖緊裝置的氣缸稱為鎖緊氣缸按鎖緊位置分為行程末端鎖 緊型和任意位置鎖緊型。1)行程末端鎖緊型氣缸 如圖 13-9 所示,當活塞運動到行程末端,氣壓釋放后,鎖 定活塞 1 在彈簧力的作用下插入活塞桿的卡槽中,活塞桿被鎖定。供氣加壓時,鎖定活塞 1 縮回退出卡槽而開鎖,活塞桿便可運動。圖 13-9 帶端鎖氣缸的結構原理 a)手動解除非鎖式 b)手動解除鎖式。1-鎖定活塞 2-橡膠帽 3,12-帽 4-緩衝墊圈 5-鎖用彈簧 6-密封件 7-導向套 8-螺釘 9-旋鈕 10-彈簧 11-限位環 2) 任意位置鎖緊型氣缸 按鎖緊方式可分為卡套錐面式,彈簧式和偏心式等多種形式。卡套錐面式鎖緊裝置由錐形制動活塞 6,制動瓦 1,制動臂 4 和制動彈簧 7 等構成,其結構 原理如圖 13-10 所示。作用在錐狀鎖緊活塞上的彈簧力由於楔的作用而被放大,再由槓桿 原理得到放大。這個放大的作用力作用在制動瓦 1 上,把活塞桿鎖緊。要釋放對活塞的鎖緊,向供氣口 A′供應壓縮空氣,把鎖緊彈簧力撤掉。圖 13-10 制動氣缸制動裝置工作原理 a)自由狀態 b)鎖緊狀態 l-制動瓦 2-制動瓦座 3-轉軸 4-制動臂 5-壓輪 6-錐形制動活 塞 7-制動彈簧 (7)氣動手爪 氣動手爪這種執行元件是一種變型氣缸。它可以用來抓取物體,實現機械手各種動作。在自動化系統中,氣動手 爪常應用在搬運,傳送工件機構中抓取,拾放物體。圖 13-10 制動氣缸制動裝置工作原理 圖 13-11 平行開合手指 a)自由狀態 b)鎖緊狀態 l-制動瓦 2-制動瓦座 3-轉軸 4-制動臂 5-壓輪 6-錐形制動活塞 7-制動彈簧 圖 13-11 平行開合手指 氣動手爪有平行開合手指(如圖 13-11 所示),肘節擺動開合手爪,有兩爪,三爪和四爪等類型,其中兩爪中有平開式和支點開閉式驅動方式有直線式和旋轉 式。氣動手爪的開閉一般是通過由氣缸活塞產生的往複直線運動帶動與手爪相連的 曲柄連桿,滾輪或齒輪等機構,驅動各個手爪同步做開,閉運動。(8)氣液阻尼缸 氣缸以可壓縮空氣為工作介質,動作快,但速度穩定性差,當負載變 化較大時,容易產生"爬行"或"自走"現象。另外,壓縮空氣的壓力較低,因而氣缸的輸 出力較小。為此,經常採用氣缸和油缸相結合的方式,組成各種氣液組合式執行元件,以達 到控制速度或增大輸出力的目的。氣液阻尼缸是利用氣缸驅動油缸,油缸除起阻尼作用 圖 13-12 氣液阻尼缸 外,還能增加氣缸的剛性(因為油是不可壓縮的) ,發揮了 液壓傳動穩定,傳動速度較均勻的優點。常用於機床和切削 裝置的進給驅動裝置。串聯式氣液阻尼缸的結構如圖 13-12 所示。它採用一根活塞桿將兩活塞串在一起,油 缸和氣缸之間用隔板隔開,防止氣體串入油缸中。當氣缸左端進氣時,氣缸將克服負載阻力,帶動油缸向右運動,調節節流閥開度就能改變阻尼缸活塞的運動速度。圖 13-13 單葉片式擺動氣缸 工作原理圖 1-葉片 2-轉子 3-定子 4-缸體 圖 13-12 氣液阻尼缸 (10)擺動氣缸 擺動氣缸 是一種在小於 360°角度範圍內做往複擺動的氣 缸,它是將壓縮空氣的壓力能轉換成機械能,輸出 力矩使 機構實現往複擺動。擺動氣缸按結構特點可分為葉片式和活塞式兩種。1) 葉片式擺動氣缸 單葉片式擺動氣缸的結構原理如圖 13-13 所示。它是由葉片軸轉 子(即輸出軸) ,定子,缸體和前後端蓋等部分組成。定子和缸體固定在一起,葉片和轉子 聯在一起。在定子上有兩條氣路,當左路進氣時,右路排氣,壓縮空氣推動葉片帶動轉子順 時針擺動。反之,作逆時針擺動。葉片式擺動氣缸體積小,重量最輕,但製造精度要求高,密封困難,泄漏是較大,而且 動密封接觸面積大,密封件的摩擦阻力損失較大,輸出效率較低,小於 80%.因此,在應用 上受到限制,一般只用在安裝位置受到限制的場合,如夾具的迴轉,閥門開閉及工作台轉位 等。圖 13-13 單葉片式擺動氣缸工作原理圖 1-葉片 2-轉子 3-定子 4-缸體 2)活塞式擺動氣缸 圖 13-14 活塞式擺動氣缸是將活塞的往複運動通過機構轉變為輸出 軸的擺動運動。按結構不同可分為齒輪齒條 式,齒輪齒條式擺動氣缸結構原理 螺桿式和曲柄式等幾種。1-齒條組件 2-彈簧柱銷 3-滑塊 4-端蓋 5-缸體 6-軸承 7-軸 8-活塞 9-齒輪 圖 13-14 齒輪齒條式擺動氣缸結構原理 1-齒條組件 2-彈簧柱銷 3-滑塊 4-端蓋 5-缸體 6-軸承 7-軸 8-活塞 9- 齒輪 齒輪齒條式擺動氣缸是通過連接在活塞上的齒條使齒輪迴轉的一種擺動氣缸,其 結構原理如圖 13-14 所示。活塞僅作往複直線運動,摩擦損失少,齒輪傳動的效率較高,此擺動氣缸效率可達到 95%左右.
三,氣缸的技術參數
1)氣缸的輸出力 氣缸理論輸出力的設計計算與液壓缸類似,可參見液壓缸的設計計 算。如雙作用單活塞桿氣缸推力計算如下: 理論推力(活塞桿伸出) Ft1=A1p (13-1) 理論拉力(活塞桿縮回) Ft2=A2p 式中 (13-2) Ft1,Ft2——氣缸理論輸出力(N) ; A1,A2——無桿腔,有桿腔活塞面積(m2) ; p — 氣缸工作壓力(Pa) 。實際中,由於活塞等運動部件的慣性力以及密封等部分的摩擦力,活塞桿的實際輸出力 小於理論推力,稱這個推力為氣缸的實際輸出力.
氣缸的效率 η 是氣缸的實際推力和理論推力的比值,即 F η= Ft (13-3) 所以 F = η ( A1 p ) (13-4) 氣缸的效率取決於密封的種類,氣缸內表面和活塞桿加工的狀態及潤滑狀態。此外,氣 缸的運動速度,排氣腔壓力,外載荷狀況及管道狀態等都會對效率產生一定的影響.
2) 負載率β 從對氣缸運行特性的研究可知,要精確確定氣缸的實際輸出力是困難的。於是在研究氣缸性能和確定氣缸的出力時,常用到負載率的概念。氣缸的負載率β定義為 β= 氣缸的實際負載 F × 100 % 氣缸的理論輸出力 Ft (l3-5) 氣缸的實際負載是由實際工況所決定的,若確定了氣缸負載率 θ,則由定義就能確定氣 缸的理論輸出力,從而可以計算氣缸的缸徑。對於阻性負載,如氣缸用作氣動夾具,負載不產生慣性力,一般選取負載率β為 0.8; 對於慣性負載,如氣缸用來推送工件,負載將產生慣性力,負載率β的取值如下 β<0.65 當氣缸低速運動,v <100 mm/s 時; β<0.5 當氣缸中速運動,v=100~500 mm/s 時; β<0.35 當氣缸高速運動,v >500 mm/s 時.
3)氣缸耗氣量 氣缸的耗氣量是活塞每分鐘移動的容積,稱這個容積為壓縮空氣耗氣 量,一般情況下,氣缸的耗氣量是指自由空氣耗氣量。4)氣缸的特性 氣缸的特性分為靜態特性和動態特性。氣缸的靜態特性是指與缸的輸 出力及耗氣量密切相關的最低工作壓力,最高工作壓力,摩擦阻力等參數。氣缸的動態特性 是指在氣缸運動過程中氣缸兩腔內空氣壓力,溫度,活塞速度,位移等參數隨時間的變化情 況。它能真實地反映氣缸的工作性能。四,氣缸的選型及計算 1.氣缸的選型步驟 氣缸的選型應根據工作要求和條件,正確選擇氣缸的類型。下面以單活塞桿雙作用缸為 例介紹氣缸的選型步驟。(1)氣缸缸徑。根據氣缸負載力的大小來確定氣缸的輸出力,由此計算出氣缸的缸徑。(2)氣缸的行程。氣缸的行程與使用的場合和機構的行程有關,但一般不選用滿行程。(3)氣缸的強度和穩定性計算 (4)氣缸的安裝形式。氣缸的安裝形式根據安裝位置和使用目的等因素決定。一般情況 下,採用固定式氣缸。在需要隨工作機構連續迴轉時(如車床磨床等) ,應選用迴轉氣缸。在活塞桿除直線運動外,還需作圓弧擺動時,則選用軸銷式氣缸。有特殊要求時,應選用相 應的特種氣缸。(5)氣缸的緩衝裝置。根據活塞的速度決定是否應採用緩衝裝置。(6)磁性開關。當氣動系統採用電氣控制方式時,可選用帶磁性開關的氣缸。(7)其它要求。如氣缸工作在有灰塵等惡劣環境下,需在活塞桿伸出端安裝防塵罩。要求無污染時需選用無給油或無油潤滑氣缸。2.氣缸直徑計算 氣缸直徑的設計計算需根據其負載大小,運行速度和系統工作壓力來決定。首先,根據 氣缸安裝及驅動負載的實際工況,分析計算出氣缸軸向實際負載 F,再由氣缸平均運行速度 來選定氣缸的負載率 θ,初步選定氣缸工作壓力(一般為 0.4 MPa~0.6 MPa) ,再由 F/θ,計算出氣缸理論出力 Ft,最後計算出缸徑及桿徑,並按標準圓整得到實際所需的缸徑和桿徑。例題 氣缸推動工件在水平導軌上運動。已知工件等運動件質量為 m=250 kg,工件與 導軌間的摩擦係數 =0.25,氣缸行程 s 為 400 mm,經 1.5 s 時間工件運動到位,系統 工作壓力 p = 0.4 MPa,試選定氣缸直徑。解:氣缸實際軸向負載 F = mg =0.25 × 250 × 9.81=613.13 N 氣缸平均速度 s 400 v= = ≈ 267 mm/s t 1.5 選定負載率 θ =0.5 則氣缸理論輸出力 F1 = F 雙作用氣缸理論推力 θ = 613.13 = 1226.6 N 0.5 1 F1 = πD 2 p 4 氣缸直徑 按標準選定氣缸缸徑為 63 mm。D= 4 Ft 4 ×1226.3 = ≈ 62.48 mm πp 3.14 × 0.4
smc氣缸種類:
氣缸整理 氣缸整理氣缸主要作用是通過壓縮空氣的開關流向實現伸縮和擺動等動作。(一).公司所用到的氣缸主要有以下幾種類型: 一。無導向氣缸 1.圓缸 需感測器安裝支架 2.方缸 3.緊湊型氣缸 2010-6-2 1 二。有導向氣缸 1.帶滑塊的氣缸: a.DGSL 滑塊 精確度高,封閉式滾珠導向,重複精度高,兩端採用彈性緩衝,並且不帶金屬擋塊 b.SLF 滑塊 扁平結構帶高精度滾珠導軌和可調端位 c。SLF,SLS, SLT 滑塊 窄型結構帶 高精度滾珠導軌 d。SLT 滑台 高精度,耐重載的滾珠導軌和可調剛性端位。e。滑動單元(雙活塞) SPZ 雙活塞桿, 2.帶導桿的氣缸 a 微型導向驅動器 DFC 帶滑動導軌。直徑 4, 6, 10 mm 行程 5 … 30 mm 輸出力 7,5 … 47 N 2010-6-2 2 b 中型導向驅動器 DFM 導向氣缸,內置導軌 C 高精度導桿氣缸 DFP 導向氣缸,抗扭轉,雙活塞桿。d 緊湊型氣缸 ADVUL 帶防止活塞轉動的導柱 e 導向驅動單元 SLE 直線驅動單元 可配置 圓缸加配件 3.雙活塞桿的氣缸 DPZ 帶兩根平行的活塞桿,位置感測,終端帶彈性緩 沖環 三。其它氣缸 1.直線擺動夾緊缸 CLR 夾緊系統,具有直線及擺動動作,90 度向右 2010-6-2 3 2.擺動氣缸帶可調液壓緩衝器和能補償間隙的齒輪系統。擺動角度 0 ..。360 用於搬運和裝配的系統產品。3.平行氣爪/旋轉氣爪自對中,內抓取或外抓取,182°擺角,位置感測 4.夾緊模塊 2010-6-2 4 5.氣囊式氣缸 6.無桿氣缸 7.膜片式氣缸 8.多位置氣缸 (二)常見的氣缸附件 2010-6-2 5 (三) 氣缸常見故障。由於安裝與使用不當氣缸也會產生故障。故障 原因分析 排除方法 活塞桿安裝偏心 重新安裝調整,使活塞桿不受偏心和橫 外 泄 活塞桿端漏氣 潤滑油供應不足 向負荷。檢查油霧器是否失靈。漏 缸筒與缸蓋間漏氣 活塞密封圈磨損 緩衝調節處漏氣 活塞桿軸承配合面有雜質 更換密封圈。活塞桿有傷痕 清洗除去雜質,安裝更換防塵罩。更換活塞桿。內 活塞密封圈損壞 更換密封 泄 潤滑不良 檢查油霧器是否失靈 漏 活塞兩端串氣 活塞被卡住,活塞配合面 重新安裝調整,使活塞桿不受偏心和橫 有缺陷。向負荷。雜質擠入密封面 除去雜質,採用凈化壓縮空氣。潤滑不良 檢查油霧器是否失靈 輸出力不足 活塞或活塞桿卡住 重新安裝調整,消除偏心橫向負荷。動作不平穩 供氣流量不足 加大連接或管接頭口徑 有冷凝水雜質 注意用凈化乾燥壓縮空氣,防止水凝結。緩衝密封圈磨損 更換密封圈 緩衝效果不良 調節螺釘損壞 更換調節螺釘 汽缸速度太快 注意緩衝機構是否適合 有偏心橫向負荷 消除偏心橫向負荷 損傷 活塞桿損壞 活塞桿受衝擊負荷 衝擊不能加在活塞桿上 氣缸的速度太快 設置緩衝裝置 缸蓋損壞 緩衝機構不起作用 在外部或迴路中設置緩衝機構

問題原因


⒈汽缸是鑄造而成的,汽缸出廠后都要經過時效處理,使汽缸在鑄造過程中所產生的內應力完全消除。如果時效時間短,那麼加工好的汽缸在以後的運行中還會變形。
⒉汽缸在運行時受力的情況很複雜,除了受汽缸內外氣體的壓力差和裝在其中的各零部件的重量等靜載荷外,還要承受蒸汽流出靜葉時對靜止部分的反作用力,以及各種連接管道冷熱狀態下對汽缸的作用力,在這些力的相互作用下,汽缸易發生塑性變形造成泄漏。
⒊汽缸的負荷增減過快,特別是快速的啟動、停機和工況變化時溫度變化大、暖缸的方式不正確、停機檢修時打開保溫層過早等,在汽缸中和法蘭上產生很大的熱應力和熱變形。
⒋汽缸在機械加工的過程中或經過補焊后產生了應力,但沒有對汽缸進行回火處理加以消除,致使汽缸存在較大的殘餘應力,在運行中產生永久的變形。
⒌在安裝或檢修的過程中,由於檢修工藝和檢修技術的原因,使內缸、汽缸隔板、隔板套及汽封套的膨脹間隙不合適,或是掛耳壓板的膨脹間隙不合適,運行后產生巨大的膨脹力使汽缸變形。
⒍使用的汽缸密封劑質量不好、雜質過多或是型號不對;汽缸密封劑內若有堅硬的雜質顆粒就會使密封面難以緊密的結合。
⒎汽缸螺栓的緊力不足或是螺栓的材質不合格。汽缸結合面的嚴密性主要靠螺栓的緊力來實現的。機組的起停或是增減負荷時產生的熱應力和高溫會造成螺栓的應力鬆弛,如果應力不足,螺栓的預緊力就會逐漸減小。如果汽缸的螺栓材質不好,螺栓在長時間的運行當中,在熱應力和汽缸膨脹力的作用下被拉長,發生塑性變形或斷裂,緊力就會不足,使汽缸發生泄漏的現象。
⒏汽缸螺栓緊固的順序不正確。一般的汽缸螺栓在緊固時是從中間向兩邊同時緊固,也就是從垂弧最大處或是受力變形最大的地方緊固,這樣就會把變形最大的處的間隙向汽缸前後的自由端轉移,最後間隙漸漸消失。如果是從兩邊向中間緊,間隙就會集中於中部,汽缸結合面形成弓型間隙,引起蒸汽泄漏。
氣缸出現內、外泄漏,一般是因活塞桿安裝偏心,潤滑油供應不足,密封圈和密封環磨損或損壞,氣缸內有雜質及活塞桿有傷痕等造成的。所以,當氣缸出現內、外泄漏時,應重新調整活塞桿的中心,以保證活塞桿與缸筒的同軸度;須經常檢查油霧器工作是否可靠,以保證執行元件潤滑良好;當密封圈和密封環出現磨損或損環時,須及時更換;若氣缸內存在雜質,應及時清除;活塞桿上有傷痕時,應換新。
氣缸的輸出力不足和動作不平穩,一般是因活塞或活塞桿被卡住、潤滑不良、供氣量不足,或缸內有冷凝水和雜質等原因造成的。對此,應調整活塞桿的中心;檢查油霧器的工作是否可靠;供氣管路是否被堵塞。當氣缸內存有冷凝水和雜質時,應及時清除。
氣缸的緩衝效果不良,一般是因緩衝密封圈磨損或調節螺釘損壞所致。此時,應更換密封圈和調節螺釘。
氣缸的活塞桿和缸蓋損壞,一般是因活塞桿安裝偏心或緩衝機構不起作用而造成的。對此,應調整活塞桿的中心位置;更換緩衝密封圈或調節螺釘。
解決方案
⒈汽缸變形較大或漏汽嚴重的結合面,採用研刮結合面的方法
如果上缸結合面變形在0.05mm範圍內,以上缸結合面為基準面,在下缸結合面塗紅丹或是壓印藍紙,根據痕迹研刮下缸。如果上缸的結合面變形量大,在上缸塗紅丹,用大平尺研出痕迹,把上缸研平。或是採取機械加工的方法把上缸結合面找平,再以上缸為基準研刮下缸結合面。汽缸結合面的研刮一般有兩種方法:
⑴是不緊結合面的螺栓,用千斤頂微微推動上缸前後移動,根據下缸結合面紅丹的著色情況來研刮。這種方法適合結構剛性強的高壓缸
⑵是緊結合面的螺栓,根據塞尺的檢查結合面的嚴密性,測出數值及壓出的痕迹,修刮結合面,這種方法可以排除汽缸垂弧對間隙的影響。
⒉採用適當的汽缸密封材料
汽輪機汽缸密封劑還沒有統一的國家標準和行業標準,製作原料和配方也各不相同,產品質量參差不齊;在選擇汽輪機汽缸密封劑時,就要選在行業內有口碑,產品質量有保證的正規生產廠家,以保證檢修處理后汽缸的嚴密性。
⒊局部補焊的方法
由於汽缸結合面被蒸汽沖刷或腐蝕出溝痕,選用適當的焊條把溝痕添平,用平板或平尺研出痕迹,研刮焊道和結合面在同一平面內。汽缸結合面變形較大或是漏汽嚴重時,在下缸的結合面補焊一條或兩條10—20mm寬的密消除間隙封帶,然後用平尺或是扣上缸測量,並塗紅丹研刮,直到消除間隙。此操作的工藝也很簡單,焊前預熱汽缸至150℃,然後在室溫下進行分段退焊或跳焊。選用奧氏體焊條,如A407、A412,焊後用石棉布覆蓋保溫緩冷。待冷卻室溫後進行打磨修刮。
⒋汽缸結合面的塗鍍或噴塗
當汽缸結合面大面積漏汽,間隙在0.50mm左右時,為了減少研刮的工作量,可用塗鍍的工藝。用汽缸做陽極,塗具做陰極,在汽缸的結合面上反覆塗刷電解溶液,塗層的厚度要根據汽缸結合面間隙的大小而定,塗層的種類要根據汽缸的材料和修刮的工藝而定。噴塗就是用專用的高溫火焰噴槍把金屬粉末加熱至熔化或達到塑性狀態后噴射於處理過的汽缸表面,形成一層具有所需性能的塗層方法。其特點就是設備簡單,操作方便塗層牢固,噴塗后汽缸溫度僅為70℃—80℃不會使汽缸產生變形,而且可獲得耐熱,耐磨,抗腐蝕的塗層。注意的是在塗渡和噴塗前都要對缸面進行打磨、除油、拉毛,在塗渡和噴塗后要對塗層進行研刮,保證結合面的嚴密。
⒌結合面加墊的方法
如果結合面的局部間隙泄漏不是很大,可用80—100目的銅網經熱處理使其硬度降低,然後剪成適當的形狀,鋪在結合面的漏汽處,再配以汽缸密封劑。如果結合面的間隙較大,泄漏嚴重,可在上下結合面開寬50mm深5mm的槽,中間鑲嵌IGr18Ni9Ti的齒形墊,齒形墊的厚度一般比槽的深度大0.05—0.08mm左右,並可用同等形狀的不鏽鋼墊片做以調整。
⒍控制螺栓應力的方法
如果汽缸結合面的變形較小,而且很均勻,可在有間隙處更換新的螺栓,或是適當的加大螺栓的預緊力。按從中間向兩邊同時緊固,也就是從垂弧最大處或是受力變形最大的地方緊固螺栓。理論上來說,控制螺栓的預緊力可用公式d/L≤A來計算,但由於此計算的數據與測量的手段還在研究當中,沒有達到推廣,多在螺栓的允許的最大應力內根據經驗而定。
⒎新時期採用的高分子材料方法
隨著技術的進一步發展,高分子複合材料逐漸在氣缸維護中取得了成功的應用。相對於傳統手段相比,高分子複合材料具有較為優異的耐溫性能,良好的耐壓性能,以及更為出色的密封性能,且具有良好的塑變性,受熱不會固化,密封膜不會被破壞,從而保證了機件密封面的密封;加之易於清除,使用過的密封面可以用無水乙醇或丙酮輕易的擦去,而不會附著於密封面;由於其優異的性能,逐漸受到越來越多氣缸企業的青睞。