生物科學
一門學科
生物科學(和生物學不同),生物科學涉及領域相當廣闊,包括植物學、動物學、微生物學、神經學、生理學、組織學、解剖學等等,主要研究生物的結構、生理行為和生物起源、進化與遺傳發育等,例如:人體組織結構、人類基因遺傳、細菌培養、基因工程等。經歷了實驗生物科學、分子生物學和系統生物科學等發展時期。
生物科學是一門前沿的邊緣學科,要想在此有成就,深造是難免的。
生物科學是一門以實驗為基礎,研究生命活動規律的科學。一般大學都設在生命科學院內,與生物技術,生物工程是兄弟專業。其專業涉及面相當廣,包括植物學,動物學,微生物學,神經學,生理學,組織學,解剖學等等。
本專業學生主要學習生物科學方面的基本理論、基本知識。培養具備生物科學的基本理論、基本知識和較強的實驗技能,能在科研機構、高等學校及企事業單位等從事科學研究、教學工作及管理工作的生物科學高級專門人才。
主幹學科:普通生物學生物化學分子生物學細胞生物學。
主要課程:植物學、動物學、有機化學、無機及分析化學、人體組織解剖學、人體及動物生理學、物理學、微生物學、生物化學、細胞生物學、植物生理學、基因工程、遺傳學、生態學、分子生物學、發育生物學、水生生物學、環境工程、神經生物學等。
本專業培養具備生物學基礎理論、基本知識和基本技能,具有數理化基礎、人文社科素質、國際化視野和科學思維能力,接受專業理論和專業技能訓練,並能運用所掌握的理論知識和技能在生物學及相關領域從事科學研究、技術開發、教學及管理等方面工作的創新型人才。
畢業生應該獲得以下幾方面的知識和能力:
1、掌握數學、物理、化學等方面的基本理論和基本知識;
2、掌握動物生物學、植物生物學、微生物學、生物化學、細胞生物學、遺傳學、發育生物學、神經生物學、分子生物學、生態學等方面的基本理論、基本知識和基本實驗技能;
3、了解相近專業的-般原理和知識;
4、了解國家科技政策、知識產權等有關政策和法規;
5、了解生物科學的理論前沿、應用前景和最新發展動態;
6、掌握資料查詢、文獻檢索及運用現代信息技術獲取相關信息的基本方法;具有一定的實驗設計,創造實驗條件,歸納、整理、分析實驗結果,撰寫論文,參與學術交流的能力。
主要實踐性教學環節:
包括野外實習、畢業論文等,一般安排10~20周。
主要實驗:動物生物學實驗、植物生物學實驗、微生物學實驗、細胞生物學實驗、遺傳學實驗、生物化學實驗、分子生物學實驗等。
修學年限:4年
1、專科起點本科:須具有國民教育系列大專及大專以上學歷,年滿18周歲;
2、高中起點本科:須具有高中、職業中學、中等專業學校畢業證書,年滿18周歲;
3、高中起點專科:須具有高中、職業中學、中等專業學校畢業證書,年滿18周歲。
理學學士
生物科學、生物信息學、生物信息技術、生物科學與生物技術、動植物檢疫、生物化學與分子生物學、醫學信息學、植物生物技術、動物生物技術、生物工程、生物安全、生物製藥工程、生物醫學工程、生物製藥。食品質量與安全。
生物科學專業培養具備生物科學的基本理論、基本知識和較強的實驗技能,能在科研機構、高等學校及企事業單位等從事科學研究、教學工作及管理工作的生物科學高級專門人才。
學生主要學習生物科學方面的基本理論、基本知識,受到基礎研究和應用基礎研究方面的科學思維和科學實驗訓練,具有較好的科學素養及一定的教學、科研能力。
生物科學專業研究對象由生物科學家根據生物的發展歷史、形態結構特徵、營養方式以及它們在生態系統中的作用等。
本專業對於畢業生的專業知識和專業技能要求嚴格。畢業生主要在科研機構、高等院校以及國家機關等部門從事科研、教學和高級管理工作。
生物工程與生物技術,生物科學的不同
生物科學屬於基礎科學,研究內容是生命活動的基本規律。其分支有生物分類學、生理學、動物學、植物學、微生物學、生物化學、遺傳學、分子生物學等。
生物技術和生物工程沒有實質性的差別,都是屬於應用科學,是建立在生物科學的基礎上進行應用性研究,分支有基因工程、細胞工程、發酵工程、酶工程。這兩個方向的主要區別個人認為是生物技術更偏重於科研,生物工程更加偏向於生產。
肌球蛋白三維結構的飄帶圖
生物技術的發展可以劃分為三個不同的階段:傳統生物技術、近代生物技術、現代生物技術。傳統生物技術的技術特徵是釀造技術,近代生物技術的技術特徵是微生物發酵技術,現代生物技術的技術特徵就是以基因工程為首要標誌。本文所說的生物技術,是指現代生物技術,也可稱之為生物工程。現代生物技術在70年代開始異軍突起,近一、二十年來發展極為神速。它與微電子技術、新材料技術和新能源技術並列為影響未來國計民生的四大科學技術支柱,被認為是21世紀世界知識經濟的核心。
生物技術的應用範圍十分廣泛,主要包括醫藥衛生、食品輕工、農牧漁業、能源工業、化學工業、冶金工業、環境保護等幾個方面。其中醫藥衛生領域是現代生物技術最先登上的舞台,也是目前應用最廣泛、成效最顯著、發展最迅速、潛力也最大的一個領域。
生物技術在醫藥衛生領域的應用主要有以下三個方面:
1、解決了過去用常規方法不能生產或者生產成本特別昂貴的藥品的生產技術問題,開發出了一大批新的特效藥物,如胰島素、干擾素(IFN)、白細胞介素-2(IL-2)、組織血纖維蛋白溶酶原激活因子(TPA)、腫瘤壞死因子(TNF)、集落刺激因子(CSF)、人生長激素(HGH)、表皮生長因子(EGF)等等,這些藥品可以分別用以防治諸如腫瘤、心腦肺血管、遺傳性、免疫性、內分泌等嚴重威脅人類健康的疑難病症,而且在避免毒副作用方面明顯優於傳統藥品。
2、研製出了一些靈敏度高、性能專一、實用性強的臨床診斷新設備,如體外診斷試劑、免疫診斷試劑盒等,並找到了某些疑難病症的發病原理和醫治的嶄新方法。我國的單克隆抗體診斷試劑市場前景良好。
3、基因工程疫苗、菌苗的研製成功直至大規模生產為人類抵制傳染病的侵襲,確保整個群體的優生優育展示了美好的前景。我國開發重點是乙肝基因疫苗。
現代生物技術以再生的生物資源為原料生產生物藥品,從而可獲得過去難以得到的足夠數量用於臨床的研究與治療。如1克胰島素(h-Insulin)要從7.5公斤新鮮豬或牛胰臟組織中提取得到,而目前世界上糖尿病患者有6000萬人,每人每年約需1克胰島素,這樣總計需從45億公斤新鮮胰臟中提取,這實際上辦不到的,而生物技術則很容易解決這一難題,利用基因工程的"工程菌"生產1克胰島素,只需20升發酵液,它的價值是不能用金錢來計算的。
古代的人們在採集野果、從事漁獵和農業生產的過程中,逐步積累了動植物的知識;在防治疾病的過程中,逐步積累了醫藥知識。從總體看,在19世紀以前,生物科學主要是研究生物的形態、結構和分類,積累了大量的事實資料。進入19世紀以後,科學技術水平不斷提高,顯微鏡製造更加精良,促使生物學全面發展,具體表現在尋找各種生命現象之間的內在聯繫,並且對積累起來的事實資料做出理論的概括,在細胞學、古生物學、比較解剖學、比較胚胎學等方面都取得了進展。
1859年英國生物學家達爾文(1809—1882)出版了《物種起源》一書,科學地闡述了以自然選擇學說為中心的生物進化理論,這是人類對生物界認識的偉大成就,給神創論和物種不變論以沉重的打擊,在推動現代生物學的發展方面起了巨大的作用。縱觀20世紀以前的生物科學的研究是以描述為主的,因而可以成為描述性生物學階段。
19世紀中後期,自然科學在物理學的帶動下取得了較大的成就。物理和化學的實驗方法和研究成果也逐漸引進到生物學的研究領域。到1900年,隨著孟德爾(1822—1884)發現的遺傳定律被重新提出,生物學邁進了第二階段——實驗生物學階段。在這個階段中,生物學家更多地用實驗手段和和理化技術來考察生命過程,由於生物化學、細胞遺傳學等分支學科不斷湧現,使生物科學研究逐漸集中到分析生命活動的基本規律上來。20世紀30年代以來,生物科學研究的主要目標逐漸集中在與生命本質密切相關的生物大分子——蛋白質和核酸上,1944年,美國生物學家艾菲里用細菌做實驗材料,第一次證明了DNA是遺傳物質,1953年,美國科學家沃森和英國科學家克里克共同提出了DNA分子雙螺旋結構模型,這是20世紀生物科學最偉大的成就,標誌著生物科學的發展進入了一個新階段——分子生物階段。
在分子生物學的帶動下,生物科學的眾多分支學科都迅猛發展,取得了以系列劃時代的巨大成就,是生命學成為當代成果最多和最吸引人的學科之一。
地球上現存的生物估計有200萬~450萬種;已經滅絕的種類更多,估計至少也有1500萬種。從北極到南極,從高山到深海,從冰雪覆蓋的凍原到高溫的礦泉,都有生物存在。它們具有多種多樣的形態結構,它
蛋白質
非細胞生命形態
病毒不具備細胞形態,由一個核酸長鏈和蛋白質外殼構成。
根據組成核酸的核苷酸數目計算,每一病毒顆粒的基因最多不過300個。寄生於細菌的病毒稱為噬菌體。病毒沒有自己的代謝機構,沒有酶系統,也不能產生腺苷三磷酸(ATP)。因此病毒離開了寄主細胞,就成了沒有任何生命活動,也不能獨立地自我繁殖的化學物質。只有在進入寄主細胞之後,它才可以利用活細胞中的物質和能,以及複製、轉錄和轉譯的全套裝備,按照它自己的核酸所包含的遺傳信息產生和它一樣的新一代病毒。病毒基因同其他生物的基因一樣,也可以發生突變和重組,因而也是能夠演化的。由於病毒沒有獨立的代謝機構,也不能獨立地繁殖,因而被認為是一種不完整的生命形態。關於病毒的起源,有人認為病毒是由於寄生生活而高度退化的生物;有人認為病毒是從真核細胞脫離下來的一部分核酸和蛋白質顆粒;更多的人認為病毒是細胞形態發生以前的更低級的生命形態。近年發現了比病毒還要簡單的類病毒,它是小的RNA分子,沒有蛋白質外殼。另外還發現一類只有蛋白質卻沒有核酸的朊粒,它可以在哺乳動物身上造成慢性疾病。這些不完整的生命形態的存在縮小了無生命與生命之間的距離,說明無生命與生命之間沒有不可逾越的鴻溝。因此,在原核生物之下,另闢一界,即病毒界是比較合理的。
原核生物
原核細胞和真核細胞是細胞的兩大基本類型,它們反映細胞進化的兩個階段。把具有細胞形態的生物劃分為原核生物和真核生物,是現代生物科學的一大進展。原核細胞的主要特徵是沒有線粒體、質體等膜細胞
三種顯示蛋白質三維結構的方式
支原體、立克次氏體和衣原體均屬細菌。支原體無細胞壁,細胞非常微小,甚至比某些大的病毒粒還小,能通過細菌濾器,是能夠獨立地進行生長和代謝活動的最小的生命形態。立克次氏體的酶系統不完全,它只能氧化谷氨酸,而不能氧化葡萄糖或有機酸以產生ATP。衣原體沒有能量代謝系統,不能製造ATP。大多數立克次氏體和衣原體不能獨立地進行代謝活動,被認為是介於細菌和病毒之間的生物。
藍菌是行光合自養的原核生物,是單生的,或群體的,也有多細胞的。和細菌一樣,藍菌細胞壁的主要成分也是肽聚糖,細胞也沒有核膜和細胞器,如線粒體、高爾基器、葉綠體等。但藍菌細胞有由膜組成的光合片層,這是細菌所沒有的。藍菌含有葉綠素a,這是高等植物也含有的而為細菌所沒有的一種葉綠素。藍菌還含有類胡蘿蔔素和藍色色素──藻藍蛋白,某些種還有紅色色素──藻紅蛋白,這些光合色素分佈於質膜和光合片層上。藍菌的光合作用和綠色植物的光合作用一樣,用於還原CO2產生的H+,因而伴隨著有機物的合成還產生分子氧,這和光合細菌的光合作用截然不同。
最早的生命是在無遊離氧的還原性大氣環境中發生的(見生命起源),所以它們應該是厭氧的,又是異養的。從厭氧到好氧,從異養到自養,是進化史上的兩個重大突破。藍菌光合作用使地球大氣從缺氧變為有氧,這樣就改變了整個生態環境,為好氧生物的發生創造了條件,為生物進化展開了新的前景。在現代地球生態系統中,藍菌仍然是生產者之一。
近年發現的原綠藻,含葉綠素a、葉綠素b和類胡蘿蔔素。從它們的光合色素的組成以及它們的細胞結構來看,很像綠藻和高等植物的葉綠體,因此受到生物科學家的重視。真核生物和原核細胞相比,真核細胞是結構更為複雜的細胞。它有線粒體等各種膜細胞器,有圍以雙層膜的細胞核,把位於核內的遺傳物質與細胞質分開。DNA為長鏈分子,與組蛋白以及其他蛋白結合而成染色體。真核細胞的分裂為有絲分裂和減數分裂,分裂的結果使複製的染色體均等地分配到子細胞中去。
原生生物是最原始的真核生物。原生生物的原始性不但表現在結構水平上,即停留在單細胞或其群體的水平,不分化成組織;也表現在營養方式的多樣性上。原生生物有自養的、異養的和混合營養的。例如,眼蟲能進行光合作用,也能吸收溶解於水中的有機物。金黃滴蟲除自養和腐食性營養外,還能和動物一樣吞食有機食物顆粒。所以這些生物還沒有明確地分化為動物、植物或真菌。根據這些特性,R.H.惠特克吸收上世紀E.海克爾的意見,將原生生物列為他的5界系統中的1界,即原生生物界。但是有些科學家主張撤銷這1界,他們的理由是原生生物界所包含的生物種類過於龐雜,大部分原生生物顯然可以歸入動物、植物或者真菌,那些處於中間狀態的原生生物也不難使用分類學的分析方法適當地確定歸屬。
植物是以光合自養為主要營養方式的真核生物。典型的植物細胞都含有液泡和以纖維素為主要成分的細胞壁。細胞質中有進行光合作用的細胞器即含有光合色素的質體──葉綠體。綠藻和高等植物的葉綠體中除葉綠素a外,還有葉綠素b。多種水生藻類,因輔助光合色素的組成不同,而呈現出不同的顏色。植物的光合作用都是以水為電子供體的,因而都是放氧的。光合自養是植物界的主要營養方式,只有某些低等的單細胞藻類,進行混合營養。少數高等植物是寄生的,行次生的吸收異養,還有很少數高等植物能夠捕捉小昆蟲,進行吸收異養。植物界從單細胞綠藻到被子植物是沿著適應光合作用的方向發展的。在高等植物中植物體發生了光合器官(葉)、支持器官(莖)以及用於固定和吸收的器官(根)的分化。葉柄和眾多分枝的莖支持片狀的葉向四面展開,以獲得最大的光照和吸收CO2的面積。細胞也逐步分化形成專門用於光合作用、輸導和覆蓋等各種組織。大多數植物的生殖是有性生殖,形成配子體和孢子體世代交替的生活史。在高等植物中,孢子體不斷發展分化,而配子體則趨於簡化。植物是生態系統中最主要的生產者,也是地球上氧氣的主要來源。
真菌是以吸收為主要營養方式的真核生物。
多種多樣的真菌
粘菌是一種特殊的真菌。它的生活史中有一段是真菌性的,而另一段則是動物性的,其結構、行為和取食方法與變形蟲相似。粘菌被認為是介於真菌和動物之間的生物。動物是以吞食為營養方式的真核生物。吞食異養包括捕獲、吞食、消化和吸收等一系列複雜的過程。動物體的結構是沿著適應吞食異養的方向發展的。單細胞動物吞入食物后形成食物泡。食物在食物泡中被消化,然後透過膜而進入細胞質中,細胞質中溶酶體與之融合,是為細胞內消化。多細胞動物在進化過程中,細胞內消化逐漸為細胞外消化所取代,食物被捕獲后在消化道內由消化腺分泌酶而被消化,消化后的小分子營養物經消化道吸收,並通過循環系統而被輸送給身體各部的細胞。與此相適應,多細胞動物逐步形成了複雜的排泄系統、進行氣體交換的外呼吸系統以及複雜的感覺器官、神經系統、內分泌系統和運動系統等。神經系統和內分泌系統等組成了複雜的自我調節和自我控制的機構,調節和控制著全部生理過程。在全部生物中,只有動物的身體構造發展到如此複雜的高級水平。在生態系統中,動物是有機食物的消費者。在生命發展的早期,即在地球上只有藍菌和細菌時,生態系統是由生產者和分解者組成的兩環系統。隨著真核生物特別是動物的產生和發展,兩環生態系統發展成由生產者、分解者和消費者所組成的三環系統。出現了今日豐富多彩的生物世界。
從類病毒、病毒到植物、動物,生物擁有眾多特徵鮮明的類型。各種類型之間又有一系列中間環節,形成連續的譜系。同時由營養方式決定的三大進化方向,在生態系統中呈現出相互作用的空間關係。因而,進化既是時間過程,又是空間發展過程。生物從時間的歷史淵源和空間的生活關係來講,都是一個整體。
生物科學的一些基本研究方法──觀察描述的方法、比較的方法和實驗的方法等是在生物科學發展進程中逐步形成的。在生物科學的發展史上,這些方法依次興起,成為一定時期的主要研究手段。現在,這些方
顯微鏡下的細胞
比較的方法。18世紀下半葉,生物科學不僅積累了大量分類學材料,而且積累了許多形態學、解剖學、生理學的材料。在這種情況下,僅僅作分類研究已經不夠了,需要全面地考察物種的各種性狀,分析不同物種之間的差異點和共同點,將它們歸併成自然的類群。比較的方法便被應用於生物科學。
運用比較的方法研究生物,是力求從物種之間的類似性找到生物的結構模式、原型甚至某種共同的結構單元。G.居維葉在動物學方面,J.W.von歌德在植物學方面,是用比較方法研究生物科學問題的著名學者。用比較的方法研究生物,愈來愈深刻地揭示動物和植物結構上的統一性,勢必觸及各個不同類型生物的起源
達爾文
2:實驗的方法前面提到的觀察和描述的方法有時也要對研究對象作某些處理,但這只是為了更好地觀察自然發生的現象,而不是要考察這種處理所引起的效應。實驗方法則是人為地干預、控制所研究的對象,並通過這種干預和控制所造成的效應來研究對象的某種屬性。實驗的方法是自然科學研究中最重要的方法之一。17世紀前後生物科學中出現了最早的一批生物科學實驗,如英國生理學家W.哈維關於血液循環的實驗,J.B.van黑爾蒙特關於柳樹生長的實驗等。然而在那時,生物科學的實驗並沒有發展起來,這是因為物理學、化學還沒有為生物科學實驗準備好條件,活力論還佔統治地位。很多人甚至認為,用實驗的方法研究生物科學只能起很小的作用。
到了19世紀,物理學、化學比較成熟了,生物科學實驗就有了堅實的基礎,因而首先是生理學,然後是細菌學和生物化學相繼成為明確的實驗性的學科。19世紀80年代,實驗方法進一步被應用到了胚胎學,細胞學和遺傳學等學科。到了20世紀30年代,除了古生物科學等少數學科,大多數的生物科學領域都因為應用了實驗方法而取得新進展。
實驗方法當然包含著對研究對象進行某種處理,然而更重要的則是它的思維方式。用實驗的方法研究某一生命過程,要求根據已有事實提出假說,並根據假說推導出一個可以用實驗檢驗的預測,然後進行實驗,如果實驗結果符合預測,就說明假說是正確的。在這裡,假說必須是可以用實驗加以驗證的,而且只有經過實驗的檢驗,假說才可能上升為學說或理論。實驗方法的使用大大加強了研究工作的精確性。19世紀以來,實驗方法成為生物科學主要的研究方法后,生物科學發生巨大變化,成為精確的實驗科學。
20世紀,實驗方法獲得巨大發展,然而單純觀察或描述方法,仍然是生物科學的基本研究方法。生物體具有多層次的複雜的形態結構。每一個歷史時期都有形態描述的任務。20世紀30年代出現了電子顯微鏡,使觀察和描述深入到超微世界。人們通過電子顯微鏡看到了枝原體和病毒,也看到了細胞器的超微結構。由於細胞是生命的最小單位,是生命活動的最小的系統,因而揭示它構造上的細節,對揭示生命的本質具有重大的意義。
比較的方法在20世紀也有新的進展,它已經不限於生物體的宏觀形態結構的比較,而是深入到不同屬種的蛋白質、核酸等生物大分子化學結構的比較,如不同物種的細胞色素C的化學結構的測定和比較。根據其差異程度可以對物種的親緣關係給出定量的估計。
電泳
生物科學實驗技術在20世紀突飛猛進。隨著現代物理學、化學的發展,生物科學新的實驗方法紛紛出現。層析、分光光度法、電泳、超速離心、同位素示蹤、X射線衍射分析、示波器、激光、電子計算機等相繼應用於生物科學研究。細胞培養、細胞融合、基因操作、單克隆抗體、酶和細胞固定化以及連續發酵等新技術紛紛建立,使生物科學實驗中對條件的控制更為有效、嚴格,觀察和測量更為精密,這就有可能詳盡地探索生物體內物質的、能的和信息的動態過程。生物科學實驗技術的發展使生物科學取得一系列輝煌的成就。由新型的實驗技術發展而來的生物工程,包括基因工程、細胞工程、酶工程和發酵工程,已經成為當代新技術革命的重要內容。實驗研究往往帶有分析的性質。生物科學實驗分析已經深入到分子的層次,生物大分子本身並不具有生命屬性,只有這些生物大分子形成細胞這樣複雜的系統,才表現出生命的活動。沒有活的分子,只有活的系統。在每一個層次上,新的生物科學規律總是作為系統的和整體的規律而出現的。對於生物科學來說,既需要有精確的實驗分析,又需要從整體和系統的角度來觀察生命。1924~1928年L.von.貝塔蘭菲提出系統論思想,認為一切生物是時空上有限的具有複雜結構的一種自然系統。1932~1934年,他提出用數學和數學模型來研究生物科學。半個世紀以來,系統論取得了很大發展,湧現出許多定量處理系統問題的數學理論。生物科學也積累了大量關於各個層次生命系統及其組成成分的實驗資料,系統論方法將作為新的研究方法而受到人們的重視。
顯微鏡
生物科學的分支學科各有一定的研究內容而又相互依賴、互相交叉。此外,生命作為一種物質運動形態,有它自己的生物科學規律,同時又包含並遵循物理和化學的規律。因此,生物科學同物理學、化學有著密切的關係。生物分佈於地球表面,是構成地球景觀的重要因素。因此,生物科學和地學也是互相滲透、互相交叉的。早期的生物科學主要是對自然的觀察和描述,是關於博物學和形態分類的研究。所以生物科學最早是按類群劃分學科的,如植物學、動物學、微生物科學等。由於生物種類的多樣性,也由於人們對生物科學的了解越來越多,學科的劃分也就越來越細,一門學科往往要再劃分為若干學科,例如植物學可劃分為藻類學、苔蘚植物學、蕨類植物學等;動物學劃分為原生動物學、昆蟲學、魚類學、鳥類學等;微生物不是一個自然的生物類群,只是一個人為的劃分,一切微小的生物如細菌以及單細胞真菌、藻類、原生動物都可稱為微生物,不具細胞形態的病毒也可列入微生物之中。因而微生物科學進一步分為細菌學、真菌學、病毒學等。
電泳
生物在地球歷史中有著40億年左右的發展進化歷程。大約有1500萬種生物已經絕滅,它們的一些遺骸保存在地層中形成化石。古生物科學專門通過化石研究地質歷史中的生物,早期古生物科學多偏重於對化石的分類和描述,近年來生物科學領域的各個分支學科被引入古生物科學,相繼產生古生態學、古生物地理學等分支學科。現在有人建議,以廣義的古生物生物科學代替原來限於對化石進行分類描述的古生物科學。
生物的類群是如此的繁多,需要一個專門的學科來研究類群的劃分,這個學科就是分類學。林奈時期的分類以物種不變論為指導思想,只是根據某幾個鑒別特徵來劃分門類,習稱人為分類。現代的分類是以進化論為指導思想,根據物種在進化上的親疏遠近進行分類,通稱自然分類。現代分類學不僅進行形態結構的比較,而且吸收生物化學及分子生物科學的成就,進行分子層次的比較,從而更深刻揭示生物在進化中的相互關係。現代分類學可定義為研究生物的系統分類和生物在進化上相互關係的科學。
生物科學中有很多分支學科是按照生命運動所具有的屬性、特徵或者生命過程來劃分的。
遊動孢子
生理學是研究生物機能的學科,生理學的研究方法是以實驗為主。按研究對象又分為植物生理學、動物生理學和細菌生理學。植物生理學是在農業生產發展過程中建立起來的。生理學也可按生物的結構層次分為細胞生理學、器官生理學、個體生理學等。在早期,植物生理學多以種子植物為研究對象;動物生理學也大多聯繫醫學而以人、狗、兔、蛙等為研究對象;以後才逐漸擴展到低等生物的生理學研究,這樣就發展了比較生理學。
遺傳學是研究生物性狀的遺傳和變異,闡明其規律的學科。遺傳學是在育種實踐的推動下發展起來的。1900年孟德爾的遺傳定律被重新發現,遺傳學開始建立起來。以後,由於T.H.摩爾根等人的工作,建成了完整的細胞遺傳學體系。1953年,遺傳物質DNA分子的結構被揭示,遺傳學深入到分子水平。現在,遺傳信息的傳遞、基因的調控機制已逐漸被了解,遺傳學理論和技術在農業、工業和臨床醫學實踐中都在發揮作用,同時在生物科學的各分支學科中佔有重要的位置。生物科學的許多問題,如生物的個體發育和生物進化的機制,物種的形成以及種群概念等都必須應用遺傳學的成就來求得更深入的理解。
胚胎學是研究生物個體發育的學科,原屬形態學範圍。1859年達爾文進化論的發表大大推動了胚胎學的研究。19世紀下半葉,胚胎髮育以及受精過程的形態學都有了詳細精確的描述。此後,動物胚胎學從觀察描述發展到用實驗方法研究發育的機制,從而建立了實驗胚胎學。現在,個體發育的研究採用生物化學方法,吸收分子生物科學成就,進一步從分子水平分析發育和性狀分化的機制,並把關於發育的研究從胚胎擴展到生物的整個生活史,形成發育生物科學。
節孢子
生物化學是研究生命物質的化學組成和生物體各種化學過程的學科,是進入20世紀以後迅速發展起來的一門學科。生物化學的成就提高了人們對生命本質的認識。生物化學和分子生物科學的內容有區別,但也有相同之處。一般說來,生物化學側重於生命的化學過程、參與這一過程的作用物、產品以及酶的作用機制的研究。例如在細胞呼吸、光合作用等過程中物質和能的轉換、傳遞和反饋機制都是生物化學的研究內容。分子生物科學是從研究生物大分子的結構發展起來的,現在更多的仍是研究生物大分子的結構與功能的關係、以及基因表達、調控等方面的機制問題。
生物物理學是用物理學的概念和方法研究生物的結構和功能、研究生命活動的物理和物理化學過程的學科。早期生物物理學的研究是從生物發光、生物電等問題開始的,此後隨著生物科學的發展,物理學新概念,如量子物理、資訊理論等的介入和新技術如X衍射、光譜、波譜等的使用,生物物理的研究範圍和水平不斷加寬加深。一些重要的生命現象如光合作用的原初瞬間捕捉光能的反應,生物膜的結構及作用機制等都是生物物理學的研究課題。生物大分子晶體結構、量子生物科學以及生物控制論等也都屬於生物物理學的範圍。
生物數學是數學和生物科學結合的產物。它的任務是用數學的方法研究生物科學問題,研究生命過程的數學規律。早期,人們只是利用統計學、幾何學和一些初等的解析方法對生物現象做靜止的、定量的分析。20世紀20年代以後,人們開始建立數學模型,模擬各種生命過程。現在生物數學在生物科學各領域如生理學、遺傳學、生態學、分類學等領域中都起著重要的作用,使這些領域的研究水平迅速提高,另一方面,生物數學本身也在解決生物科學問題中發展成一獨立的學科。
有少數生物科學科是按方法來劃分的,如描述胚胎學、比較解剖學、實驗形態學等。按方法劃分的學科,往往作為更低一級的分支學科,被包括在上述按屬性和類型劃分的學科中。
生物界是一個多層次的複雜系統。為了揭示某一層次的規律以及和其他層次的關係,出現了按層次劃分的學科並且愈來愈受人們的重視。
分子生物科學是研究分子層次的生命過程的學科。它的任務在於從分子的結構與功能以及分子之間的相互作用去揭示各種生命過程的物質基礎。現代分子生物科學的一個主要分科是分子遺傳學,它研究遺傳物質的複製、遺傳信息的傳遞、表達及其調節控制問題等。
細胞生物科學是研究細胞層次生命過程的學科,早期稱細胞學是以形態描述為主的。以後,細胞學吸收了分子生物科學的成就,深入到超微結構的水平,主要研究細胞的生長、代謝和遺傳等生物科學過程,細胞學也就發展成細胞生物科學了。
個體生物科學是研究個體層次生命過程的學科。在複式顯微鏡發明之前,生物科學大都是以個體和器官系統為研究對象的。研究個體的過程有必要分析組成這一過程的器官系統過程、細胞過程和分子過程。但是個體的過程又不同於器官系統過程、細胞過程或分子過程的簡單相加。個體的過程存在著自我調節控制的機制,通過這一機制,高度複雜的有機體整合為高度協調的統一體,以協調一致的行為反應於外界因素的刺激。個體生物科學建立得很早,直到現在,仍是十分重要的。
種群生物科學是研究生物種群的結構、種群中個體間的相互關係、種群與環境的關係以及種群的自我調節和遺傳機制等。種群生物科學和生態學是有很大重疊的,種群生物科學可以說是生態學的一個基本部分。
以上所述,還僅僅是當前生物科學分科的主要格局,實際的學科比上述的還要多。例如,隨著人類的進入太空,宇宙生物科學已在發展之中。又如隨著實驗精確度的不斷提高,對實驗動物的要求也越來越嚴,研究無菌生物和悉生態的悉生生物科學也由於需要而建立起來。總之,一些新的學科不斷地分化出來,一些學科又在走向融合。生物科學分科的這種局面,反映了生物科學極其豐富的內容,也反映了生物科學蓬勃發展的景象。
生物與人類生活的許多方面都有著非常密切的關係。生物科學作為一門基礎科學,傳統上一直是農學和醫學的基礎,涉及種植業、畜牧業、漁業、醫療、製藥、衛生等等方面。隨著生物科學理論與方法的不斷發展,它的應用領域不斷擴大。現在,生物科學的影響已突破上述傳統的領域,而擴展到食品、化工、環境保護、能源和冶金工業等等方面。如果考慮到仿生學,它還影響到電子技術和信息技術。
糧食危機
食物匱乏是發展中國家長期以來未能解決的嚴重問題,當前世界上有幾億人口處於營養不良狀態。從目前到21世紀初,糧食生產至少每年要增長3%~8%才能使食物短缺狀況有所改善。人類食物的最終來源是植物的光合作用,但在陸地上擴大農業生產的土地面積是有限的,增加食物產量的主要道路是改進植物本身。過去,在發展科學的農業和“綠色革命”方面,生物科學已做出巨大的貢獻。今天,人類在一定限度內定向改造植物,用基因工程、細胞工程培育優質、高產、抗旱、抗寒、抗澇、抗鹽鹼、抗病蟲害的優良品種已經不是不切實際的遐想。近年來,植物基因工程的一些關鍵技術已經有所突破,得到了一些轉基因植物。此外,利用富含蛋白質的藻類、細菌或真菌,進行大規模培養,並從中獲得單細胞蛋白質。由於成功地利用了基因工程並取得了大規模連續發酵工程的技術經驗,單細胞蛋白技術已經取得了重大突破。氨基酸是蛋白質的單體,植物蛋白往往缺少某幾種人體必需的氨基酸,如果在食品中添加某種氨基酸,將會大大提高植物蛋白的生物科學價值。目前,用微生物發酵、固定化細胞或固定化酶技術生產氨基酸,已經逐步形成比較完整的體系,可以預料,氨基酸生產將在營養不良問題上發揮日益重要的作用。現代生物科學成就和食品工業相結合,已使食品工業成為新興的產業而蓬勃地發展起來。
糧食危機
全世界的化工能源(石油、煤等)貯備總是有限的,總有一天會枯竭。因此,自然界中可再生的生物資源(生物量)又重新被人所重視。自然界中的生物量大多是纖維素、半纖維素、木質素。將化學的、物理的和生物科學的方法結合起來加工,就可以把纖維素轉化為酒精,用作能源。有人估計,到20世紀末全世界的汽車約有35%將使用生物量(酒精)。沼氣是利用生物量開發能源的另一產品。中國和印度利用農村廢料進行厭氧發酵產生沼氣已作出顯著成績。世界上已經出現了利用固相化細胞技術的工業化沼氣厭氧反應器。一些單細胞藻類中含有與原油結構類似的油類,而且可高達總重的70%,這是另一個引人注目的可再生的生物能源。太陽能是人類可以利用的最強大的能源,而生物的光合作用則是將太陽能固定下來的最主要的途徑,可以預測,利用生物科學的理論和方法解決能源問題是大有希望的。
此外,對人口、食物、環境、能源等問題進行綜合研究,開創各種綜合解決這些問題的方法的農業生態工程的興起,最終將發展新的、大規模的近代化農業。由此可以看到,生物科學的發展和人類的未來息息相關。
20世紀70年代以來,生物科學的新進展,新成就層出不窮。從總體上看,當代生物科學主要朝著微觀和宏觀兩個方面發展:在微觀方面,生物學已經從細胞水平進入到分子水平去探索生命的本質;在宏觀方面,生態學的發展正在為解決全球性的資源和環境等問題發揮著重要作用。
生物工程方面生物工程(也叫生物技術)是生物科學與工程技術有機結合而興起的一門綜合性的科學技術。也就是說,它是以生物科學為基礎,運用先進的科學原理和工程技術手段來加工或改造生物材料,如DNA、蛋白質、染色體、細胞等,從而生產出人類所需要的生物或生物製品。生物工程在近些年來迅猛發展,碩果累累。
生物工程在醫藥方面有著廣泛的應用。例如,長期以來,預防乙型肝炎的疫苗是從乙肝病毒攜帶者的血液中提取和研製的,這樣的疫苗生產周期長,產量低,價格昂貴。現在,採用生物工程的方法,將乙肝病毒中的有關基因分離出來,引人細菌的細胞中,再採用發酵的方法,或者引人哺乳動物的細胞中,再採用細胞培養的方法,就能讓細菌或哺乳動物的細胞生產出大量的疫苗。中國研製的生物工程乙肝疫苗已經在1992年投放市場,在預防乙型肝炎中發揮了重要作用。除乙肝疫苗以外,還有抑制病毒在細胞內增殖的干擾素等多種生物工程藥物已經問世。知道,人類的許多疾病都與基因有關。在基因水平上對人類的疾病進行診斷和治療,是科學家們正在探求的另一個重大課題。為了弄清人類約10萬個基因的結構和功能,美國從1988年開始實施“人類基因組計劃”,目前這項研究已經成為國際間合作的一項重大科研課題。
生物工程在農業生產上的應用前景更為誘人,1988年,中國科學家人工合成了抗黃瓜花葉病毒的基因,並且將這種基因導人煙草等作物的細胞中,得到了抵抗病毒能力很強的作物新系,1989年,中國科學家成功地將人的生長激素基因導人鯉魚的受精卵中,培育成轉基因鯉魚。與非轉基因鯉魚相比,轉基因鯉魚的生長速度明顯加快,1993年,中國研製的兩系法雜交水稻開始大面積試種,與原來普遍種植的三系法雜交水稻相比,平均每公頃增產15%,1995年,中國科學家將某種細菌的抗蟲基因導人棉花,培育出了抗棉鈴蟲效果明顯的棉花新品種。
生物工程在開發能源和環境保護等方面同樣有著廣泛的應用。知道,煤炭、石油等能源終將枯竭,目前全世界已經面臨著能源危機。使用煤炭、石油等能源,還造成嚴重的環境污染。因此,科學家們正在努力探索開發新的能源,其中很重要的一個方面就是用生物工程開發生物能源。美國科學家在1978年成功地培育出能直接生產能源物質的植物新品種——“石油草”,這種植物的莖稈被割開后,就會流出白色乳狀的液體,經提煉就得到石油。在利用細菌治理石油污染方面,由於石油中的不同組成成分往往需要用不同的細菌來分解,科學家就將不同細菌的基因分離出來,集中到一種細菌內,從而得到了“超級菌”。這種“超級菌”分解石油的速度比普通細菌快得多,凈化石油污染的能力得到明顯的提高。
生態學方面生態學是研究生物與其生存環境之間相互關係的科學。20世紀60年代以來,人類社會面臨的人口爆炸、環境污染、資源匱乏、能源短缺和糧食危機等問題日益突出。要解決這些問題,都離不開生態學。因此,生態學的研究受到高度重視,並且取得了顯著的進展。生態系統的能量流動和物質循環的基本原理,已經成為人類謀求與大自然和諧共處、實現社會和經濟可持續發展的理論基礎;運用生態學原理,中國推行生態農業的建設,已經取得了令人矚目的成就,湧現了一批生態村、生態農場和生態林場,為實現農業的可持續發展積累了經驗。例如,安徽省穎上縣小張庄,生態環境惡劣,旱澇災害頻繁,農業結構單一,糧食產量很低。70年代中期,小張庄開始進行生態農業的建設,整治土地,興修水利,大力營造防護林,使當地生態環境得到了明顯改善。小張庄在大力發展種植業和林業的同時,還利用當地的飼草資源和魚塘,大力發展養殖業。養殖業為農田提供了大量的有機肥,從而改良了土壤。這個村還利用人畜糞便生產沼氣,發展沼氣能源。沼氣池的渣液用來餵養魚,塘泥肥田,從而建立起了良性循環的農業生態系統。
生物科學除了在生物工程和生態學領域以外,在其他許多領域也取得了令人鼓舞的進展,向人們展示出美好的前景。例如,腦科學的研究已經深入到分子水平,這不僅對腦病的防治和智力的開發有重要意義,而且將為研究生物計算機提供理論基礎。光合作用和生物固氮的研究,細胞生物學的研究,等等,也都獲得一系列的成就,在21世紀將會有更大的發展。由於生物科學的迅猛發展和它對人類社會所產生的巨大影響,許多科學家都認為,生物科學將是21世紀領先的學科之一。
WladyslawTaczanowski(1819-1890),波蘭動物學家
CoenraadJacobTemminck(1778-1858),荷蘭動物學家
彼得·GustafTengmalm(1754-1803),瑞典博物學家
Theophrastus,生物科學家
JohannesThiele(1860-1935),德國動物學家和malacologist
卡爾·彼得·Thunberg(1743-1828),瑞典博物學家
Samuel·Tickell(1811-1875),英國的鳥類學家
約翰·Torrey(1796-1873),美國植物學家,第一個專家在新世界里
約瑟夫·PittondeTournefort(1656-1708),法國植物學家
亨利·貝克·Tristram(1822-1906),英國鳥類學家
羅伯特·Trivers(被負擔1943),演變生物科學家
BernardTucker(1901-1950),英國鳥類學家
MarmadukeTunstall(1743-1790)英國鳥類學家
露絲·特納,海洋生物科學家
V
阿奇里斯·Valenciennes(1794-1865),法國動物學家
FranciscoVarela(1946-2001),智利生物科學家
尼古拉·Vavilov,蘇聯植物學家
Craig·Venter,生物科學家
Edouard·Verreaux(1810-1868),法國博物學家
朱爾斯·Verreaux(1807-1873),法國植物學家和鳥類學家
路易斯·吉恩·Pierre·Vieillot(1748-1831),法國鳥類學家
NicholasAylwardVigors(1785-1840),愛爾蘭動物學家
RudolfVirchow(1821-1902),德國生物科學家
KarelVoous(1920-2002),荷蘭鳥類學家
W
JohannGeorgWagler(1800-1832),德國爬蟲學家
查爾斯·Waterton(1782-1865),英國博物學家
詹姆斯·D.華森(1928年出生),諾貝爾得獎的生物科學家,DNA分子的結構的共同發現者
Alfred·羅素華萊士(1823-1913),英國的博物學家和生物科學家
菲利普·BarkerWebb(1793-1854),英國植物學家
八月·Weismann(1834-1914),德國生物科學家
Gilbert·白色(1720-1795),英國博物學家
約翰白(外科醫生)(c1756-1832)英國植物學家
FrancisWillughby(1635-1672),英國鳥類學家&魚類學家
亞歷山大·威爾遜(1766-1813),蘇格蘭美國鳥類學家
E.A.威爾遜(1872-1912),英國博物學家
愛德華·O.威爾遜、美國sociobiology的myrmecologist和父親
卡爾·Woese,美國微生物科學家
Sewall·懷特(1889-1988),生物科學家
X
約翰·XantusdeVesey(1825-1894),美國動物學家
Y
威廉Yarrell(1784-1856),英國博物學家
Z
FloydZaiger(1926年-),果子遺傳學
Eberhard八月Wilhelm·馮Zimmermann(1743-1815),德國動物學家
中國對生物科學做出貢獻的科學家
裴文中(190401.19—198209.18),史前考古學,古生物學家
李四光,古生物學家,古生物學家,地層學家,大地構造學家
楊鍾健(189706.01—197901.15)
李志明(1937年1月—)著名的古生物學家。
孫雲鑄(1895年11月—1979年1月5日),古生物學家
興利達(1982年—),古古生物學家
郝心(1965—),著名古生物學家
朱民(1965年10月—),古生物學家
楊遵義(1908年10月7日—2009年9月17日),中國古生物地層學教育地層古生物的創始人和開拓者
趙奚斤(1935—),中國古生物學家
谷祖剛(1936年8月14日—2012年6月1日),中國古生物學家
殷鴻福(1935年3月19日—),中國古生物學家,地質學家
廣西師範大學
雲南大學
南京林業大學
遵義師範學院
黔南民族師範學院
蘭州大學
海南大學
湛江師範學院
四川大學
廈門大學
山東大學
山東師範大學
山東農業大學
嘉應學院
中國農業大學
華南農業大學
瀋陽農業大學
西南大學
福建農林大學
四川師範大學
遼寧師範大學
長江師範學院
江西師範大學
南昌大學
中山大學
北京大學
武漢大學
重慶師範大學
延安大學
蘇州大學
上海交通大學
東北農業大學
湖北科技學院
瀋陽大學
天津師範大學
中南大學
安徽大學
安徽師範大學
內蒙古大學