共找到106條詞條名為高等數學的結果 展開

高等數學

《高等數學(下)(英文版)》是2015年東南大學出版社出版的圖書,圖書作者是東南大學大學數學教研室編。

基本信息


作者:東南大學大學數學教研室編
出版社:東南大學出版社
圖書書號:ISBN 978-7-5641-5482-0
出版日期:2015年1月
開本:B5
圖書裝訂:平裝
版次:2015年1月第1版第1次印刷
印張:21
字數:411
上架時間:2015-06-10
圖書點擊數:822
價格:¥43元

內容簡介


前言
本書是為響應東南大學國際化需要,根據國家教育部非數學專業數學基礎課教學指導分委員會制定的工科類本科數學基礎課程教學基本要求,並結合東南大學數學系多年教學改革實踐經驗編寫的全英文教材。全書分為上、下兩冊,內容包括極限、一元函數微分學、一元函數積分學、常微分方程、級數、向量代數與空間解析幾何、多元函數微分學、多元函數積分學、向量場的積分、複變函數等十個章節。

目錄結構


Chapter 5Infinite Series1
§5.1Infinite Series 1
§5.1.1The Concept of Infinite Series1
§5.1.2Conditions for Convergence3
§5.1.3Properties of Series5
Exercise 5.18
§5.2Tests for Convergence of Positive Series9
Exercise 5.218
§5.3Alternating Series, Absolute Convergence, and Conditional Convergence19
§5.3.1Alternating Series19
§5.3.2Absolute Convergence and Conditional Convergence21
Exercise 5.323
§5.4Tests for Improper Integrals24
§5.4.1Tests for the Improper Integrals: Infinite Limits of Integration24
§5.4.2Tests for the Improper Integrals: Infinite Integrands 26
§5.4.3The Gamma Function28
Exercise 5.430
§5.5Infinite Series of Functions31
§5.5.1General Definitions31
§5.5.2Uniform Convergence of Series32
§5.5.3Properties of Uniformly Convergent Functional Series
34
Exercise 5.536
§5.6Power Series37
§5.6.1The Radius and Interval of Convergence37
§5.6.2Properties of Power Series41
§5.6.3Expanding Functions into Power Series45
Exercise 5.655
§5.7Fourier Series56
§5.7.1The Concept of Fourier Series56
§5.7.2Fourier Sine and Cosine Series62
§5.7.3Expanding Functions with Arbitrary Period65
Exercise 5.768
Review and Exercise69
Chapter 6Vectors and Analytic Geometry in Space72
§6.1Vectors72
§6.1.1Vectors72
§6.1.2Linear Operations on Vectors73
§6.1.3Dot Products and Cross Product75
Exercise 6.179
§6.2Operations on Vectors in Cartesian Coordinates in Three Space
80
§6.2.1Cartesian Coordinates in Three Space80
§6.2.2Operations on Vectors in Cartesian Coordinates84
Exercise 6.288
§6.3Planes and Lines in Space89
§6.3.1Equations for Plane89
§6.3.2Lines92
§6.3.3Some Problems Related to Lines and Planes95
Exercise 6.3100
§6.4Curves and Surfaces in Space101
§6.4.1Sphere and Cylinder101
§6.4.2Curves in Space103
§6.4.3Surfaces of Revolution105
§6.4.4Quadric Surfaces106
Exercise 6.4109
Exercise Review110
Chapter 7Multivariable Functions and Partial Derivatives113
§7.1Functions of Several Variables113
Exercise 7.1116
§7.2Limits and Continuity116
Exercise 7.2120
§7.3Partial Derivative121
§7.3.1Partial Derivative121
§7.3.2Second Order Partial Derivatives123
Exercise 7.3126
§7.4Differentials128
Exercise 7.4132
§7.5Rules for Finding Partial Derivative133
§7.5.1The Chain Rule133
§7.5.2Implicit Differentiation137
Exercise 7.5140
§7.6Direction Derivatives, Gradient Vectors142
§7.6.1Direction Derivatives142
§7.6.2Gradient Vectors144
Exercise 7.6146
§7.7Geometric Applications of Differentiation of Functions of Several Variables147
§7.7.1Tangent Line and Normal Plan to a Curve147
§7.7.2Tangent Plane and Normal Line to a Surface149
Exercise 7.7152
§7.8Taylor Formula for Functions of Two Variables and Extreme Values
153
§7.8.1Taylor Formula for Functions of Two Variables153
§7.8.2Extreme Values155
§7.8.3Absolute Maxima and Minima on Closed Bounded Regions
160
§7.8.4Lagrange Multipliers161
Exercise 7.8164
Exercise Review166
Chapter 8Multiple Integrals172
§8.1Concept and Properties of Multiple Integrals172
§8.2Evaluation of Double Integrals174
§8.2.1Double Integrals in Rectangular Coordinates174
§8.2.2Double Integrals in Polar Coordinates178
§8.2.3Substitutions in Double Integrals182
Exercise 8.2185
§8.3Evaluation of Triple Integrals188
§8.3.1Triple Integrals in Rectangular Coordinates188
§8.3.2Triple Integrals in Cylindrical and Spherical Coordinates
192
Exercise 8.3196
§8.4Evaluation of Line Integral with Respect to Arc Length197
Exercise 8.4199
§8.5Evaluation of Surface Integrals with Respect to Area200
§8.5.1Surface Area200
§8.5.2Evaluation of Surface Integrals with Respect to Area202
Exercise 8.5204
§8.6Application for the Integrals205
Exercise 8.6208
Review and Exercise209
Chapter 9Integration in Vectors Field213
§9.1Vector Fields213
Exercise 9.1215
§9.2Line Integrals of the Second Type216
§9.2.1The Concept and Properties of the Line Integrals of the Second Type216
§9.2.2Calculation218
§9.2.3The Relation between the Two Line Integrals221
Exercise 9.2221
§9.3Green Theorem in the Plane222
§9.3.1Green Theorem223
§9.3.2Path Independence for the Plane Case228
Exercise 9.3232
§9.4The Surface Integral for Flux234
§9.4.1Orientation234
§9.4.2The Conception of the Surface Integral for Flux235
§9.4.3Calculation237
§9.4.4The Relation between the Two Surface Integrals240
Exercise 9.4241
§9.5Gauss Divergence Theorem242
Exercise 9.5246
§9.6Stoke Theorem247
§9.6.1Stoke Theorem247
§9.6.2Path Independence in Threespace251
Exercise 9.6252
Review and Exercise252
Chapter 10Complex Analysis255
§10.1Complex Numbers255
Exercise 10.1257
§10.2Complex Functions 259
§10.2.1Complex Valued Functions259
§10.2.2Limits259
§10.2.3Continuity261
Exercise 10.2263
§10.3Differential Calculus of Complex Functions264
§10.3.1Derivatives264
§10.3.2Analytic Functions268
§10.3.3Elementary Functions272
Exercise 10.3276
§10.4Complex Integration279
§10.4.1Complex Integration279
§10.4.2CauchyGoursat Theorem and Deformation Theorem
282
§10.4.3Cauchy Integral Formula and Cauchy Integral Formula for Derivatives289
Exercise 10.4292
§10.5Series Expansion of Complex Function 295
§10.5.1Sequences of Functions296
§10.5.2Taylor Series297
§10.5.3Laurent Series299
Exercise 10.5304
§10.6Singularities and Residue307
§10.6.1Singularities and Poles307
§10.6.2Cauchy Residue Theorem311
§10.6.3Evaluation of Real Integrals316
Exercise 10.6320
Exercise Review323